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ABSTRACT

This report summarizes the work performed during the first year of a

research effort to determine the sound fields associated with jet engine

inlet configurations. A solution approach for axisymmetric bodies based

upon the integral formulation of the wave equation has been developed.

This solution approach circumvents the uniqueness problems which normally

occur at certain frequencies when “straight forward ” solutions of the in-

tegra l equation are obtained. A numerical method and a computer program

for solving for the acoustic field associated with general inlet config-

urations and boundary conditions have also been developed. To evaluate

the numerical method , computed and exact results are compared for a sphere

and a finite length cylinder. For continuous boundary conditions, the

agreement is within ten per cent over a range of nondimensional frequencies

from one to ten. For discontinuous boundary conditions, the numerical errors

increase by a factor of two. This report presents results for a given inlet

configuration and the computed and exact solutions are shown to agree to

within ten per cent over the nondimensional. frequency range from one to

ten.
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I. INTRODUCTION

This report summarizes the results obtained during the first year of

support under AFOSR Contract Number F49620-.77-C-0066. This contract was

initiated on February 1, 1977.

The research conducted under this contract is directed towards deve lop-

ing analytical techniques for predicting the characteristics of the radiated

sound fields from jet engine inlets. Such capabilities are necessary to evalu-

ate the effectiveness of potentia l sound source modifications and the effi-

ciency of sound suppression techniques for fan and compressor noise attenua-

tion in inlets. During the first year, the conducted research efforts have

concentrated on the development of an efficient analytical technique for the

prediction of the radiated fields associated with lined inlet configurations.

In the second year, experimental investigations will be conducted to provide

data for comparison with the theoretical predictions.

During the first year, a solution approach based upon an integral formula-

tion of the wave equation has been developed and used to determine the charac-

teristics of the sound fields of several previously investigated geometries.

Efficient numerical techniques have been devised for solving the integral

equation, and the necessary computer programs have been written and tested.

These programs are now capable of computing the surface and radiated sound

fields for arbitrary geometries with lined or unlined surfaces and sound

sources of arbitrary spatial dependence. These capabilities are necessary for

the investigations of sound fields from jet inlet configurations.

The efforts conducted under this contract has resulted in three publica-

tions
1
’2’

3 
which are included in Appendices A-C of this report. These publi-

cations provide more detailed descriptions of the research efforts conducted
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under this contract. The research performed during the first year is sum-

marized in the following sections.

II. ANALYTICAL TECHNIQUE

The general analytical method used to determine the radiated sound fields

from arbitrary geometries is described in Appendix A. This technique is based

on the integral form of the solutions to the wave equation. This general form-

ulation has been specialized to axisymmetric configurations, which are applic-

able to jet engine configurations which are of interest in this study, in Ap-

pendix B.

The study of sound radiation involves the determination of the acoustic

field over an infinite domain. However, with the integral formulation of the

wave equation, the acoustic potentia l, which is proportional to the acoustic

pressure, can be computed at any point in the far field solely from the values

of the potential distribution at the surface. Thus, the problem is reduced to

solving for the acoustic field at the surface only instead of over an infinite

domain.

Several problems are encountered while solving the integral equation

governing the surface potential distribution. At certain frequencies the equa-

tion fails to yield a unique solution. These frequencies correspond to internal

eigenfrequencies (or resonant frequencies) of the geometry under consideration.

This nonuniqueness manifests itself when numerically solving the integra l

equation by causing the coefficient matrix of the system of linear algebraic

equations which results from the application of approximate quadrature to the

integral equation to become ill-conditioned , causing large numerical errors.

2
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Using a method proposed by Burton and Miller (Ref. 13 of Appendix A),

this behavior can be eliminated. This method consists of adding the inte-

gral. eauation for the normal velocity multi plied by a coupling constant.

It is then proven that the solution for the acoustic potential field from

the combined equation is unique for imaginary values of the coupling con-

stant. This analytical method was therefore incorporated in this study.

Although other techniques can be used to avoid the uniqueness prob lem at

certain frequencies (Refs. 4, 6, and 14 of Appendix A), the combined in-

tegra l equation of Burton and Miller was found to give the best results ,

and it required minimum computation times.

In order to use the Burton and Miller method two problems had to be

resolved . First, a strong singularity exists in the integrand of the com-

bined integral equation developed by Burton and Miller. In the present

study, this equation was reformulated to obtain an equation containing only

weakly singular terms which could be handled numerically . The second prob-

1cm is connected with the choice of the coupling constant used by Burton

and Miller in combining the integral equations for the potential and nor-

mal velocity. It has been found in this study that an optimum value for

this parameter for use in numerical computations can be found. Although

Burton and Miller showed that the parameter must contain a nonzero imagi-

nary component, they gave no indication of how the results are affected by

this parameter. The value which gives the best numerical results is i/k

where i —V iand k is the wave number.

3
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III . NUMERICAL METHOD

A. Integration Procedure

To determine the acoustic field associated with a geometry, the integral

equation describing the surface potential distribution must first be solved.

Using this distribution, the potential at any exterior point can then be

determined to generate the far field sound pattern. For general geometries,

the integral equations cannot be solved exactly, and approximate methods

must be used. These methods result in a system of linear, algebraic equations

with complex coefficients which can be solved by complex Gauss-Jordan reduc-

tion to obtain the acoustic potential distribution at the surface.

For the axisymmetric formulation used in this investigation, the surface

shape is defined by a line in the radial r and axial a directions, and this

line is rotated about the axis. The integral equation can then be separated

into two line integrals ; one in the tangential direction and one along the

surface contour in the r - z plane. In the tangential direction, the line

integrals are given by Eqns. (15)-(17) of Appendix B, which, in general,

must be solved numerically. A 96-point Gaussian quadrature formula was used

to evaluate these integrals. The computational error is approximately in-

versely proportional to the number of points used to evaluate the integrals

in the tangential direction, Along the surface contour in the r - z plane,

the integration of Eq. (18) in Appendix B is required. The integral over

the perimeter is first separated into integrals over n subintervals of either

constant or varying lengths. The acoustic potential is assumed constant over

each subinterval and it is taken outside the integral. Finally, a two-point

Gaussian quadrature formula is used to evaluate the components of the func-

tions defined by Eqs. (15)-(17) of Appendix B in the r - z plane over each

subinterval. Increasing the order of the Gaussian quadra ture does not sig—

4
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nificantly affect the accuracy of the computations. However, the error was

found to decrease proportionately as the number subintervals n was increased.

In another solution approach, the potential was assumed to vary linearly

over each interval in order to improve the accuracy of the correct potential

values. However, the results using this linear interpolation scheme were not

as accurate as in the above-mentioned approach. The cause of the inaccuracies

in this scheme have not been extensively studied because of time restrictions .

However, the errors appear to arise from the implementation procedure used.

When linear interpolation was applied to a finite cylinder, problems arose

at the corner points. At these points the norma l to the surface appearing

in the integral equation is undefined. If the potential is assumed constant

over each subinterval, subintervals can be taken on either side of this

point which in effect avoids the corner points. The method used in applying

the linear interpolation about these points strongly influences the computed

results. Although several techniques were tried, none proved entirely satis-

factory. Also , for general surfaces for which the subintervals may be of un-

equal length , the d i f f i cu l ty  in implementing the lir1ear interpolation tech-

niqu e and its questionable value make this method impractical. Therefore, it

will not be used in future studies unless significant ixnprove~~ tt... can be

made.

In another study involving the numerical evaluation of the integral

equations, the effect of the coupling constant (o~ appearing in Eq. (23) of

Appendix A) was investigated. In the method of Burton and Miller, the inte-

gral equations for the acoustic potential and normal velocity at the surface

are combined into one equation. The terms from the potential equation are of

order k whereas the terms from the expression for the normal velocity are of

5



order k2. Thus, as the frequency is increased , the terms of order k
2

dominate. T.~e results become less accurate because the combined equation

in effect becomes the equation for the normal velocity. This equation,

like the integral formula for the acoustic potential, yields large errors

at certain frequencies when numerically evaluated. By choosing the coupling

constant to be i/k, the terms of order k
2 are now reduced to order k. Now,

as the frequency is increased, the terms from the expression for the normal

velocity do not become dciii~nant, and the uniqueness problem is avoided at

all frequencies.

B. Evaluation of Geometric_Parameters and Boundary Conditions

The geometric parameters appearing in the integrai Helmholtz equation

(see Equation (23) of Appendix A) are the distances between points on the

surface, the normal vector at each point, and the lengths of the subinter-

vals in the axial plane. The method for computing these parameters is pre-

sented in Section III of Appendix C.

There are two types of boundary conditions which must be specified over

the surface. The first consists of a forcing function which generates the

acoustic field, In a jet engine inlet, most of the acoustic field is pro-

duced by disturbances caused by the interaction between the flow field

produced by the fan b lade~- and the stator waves. A literature search was

conducted to determine the spatial dependence of the sound generated by the

stator-blade interaction so that the resulting radiated sound pattern could

be computed . Because of the complexity of the resulting expressions
4
, there

was not sufficient time to use these predictions in the present research effort.

However, both the analytical and numerical methods used in computing the radi-

ated sound field in the present study are capable of handling forcing functions

6



of arbitrary spatial dependence in the r-z plane, such as those encountered

in jet engine inlets.

The second type of boundary condition is given by specifying the reaction

of the surface to the wave motion. For rigid surfaces , the normal velocity

(i.e., the normal derivative of the acoustic potential) is zero and all the

sound incident on the surface is reflected. For nonrigid or sound absorbing

surfaces, the normal velocity is nonzero since the surface now vibrates in

response to the wave motion. The normal velocity at the surface is propor-

tional to the pressure oscillations (i.e., the acoustic potential) of the

surrounding fluid and the constant of proportionality is called the surface

admittance. The integral wave equation involves both the acoustic potential

and the normal acoustic velocity which means there is one equation for two

unknowns. By using the admittance relationship, the normal velocity can be

expressed in terms of the acoustic potential and the admittance. The result-

ing equation can then be solved for the potential.

The admittance is a measure of the sound absorption characteristics of

the surface. In jet engine inlets the surface.s are often lined with Helm-

holtz resonator arrays which absorb sound and reduce the noise radiated to

the surroundings. Expressions for the admittances of these sound absorbing

devices have been derived5 and they can be used in the present investigation.

In fact, the capability exists to predict the sound field produced from a

jet engine inlet for arbitrary sound source and admittance characteristic...

C. Computer Program

A computer program written in Extended FORTRA N IV has been deve loped

for use on a CDC CYBER 70 computer for solving the system of linear alge-

braic equations which result from the numerical approximation to the inte-

gral wave equation. This program has been thoroughly checked out using

7
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simple geometries for which exact solutions can b obtained. The program

employs standard functions common to all FORTRAN compilers so that it can

be used with minimum modifications on other computers, Generality is main-

tained in order to accommodate arbitrary surface geometries and boundary

conditions. In the cases run to date, the computation time for determining

the surface potential is given by the following approximate formula

t = 0.05 (n)
2

where t is the computation time in seconds and n is the number of subinter-

vals used in the numerical evaluation of the integral equation. Approximately

one second per point is required for the far field potential. For the cases

run thus far, the run times have been from 20 to 140 seconds for 20 to 53

subintervals. Efforts toward maximizing the programming and numerical effi-

ciency have resulted in these relatively short run times .

IV . RESULTS AND SUMMARY

A . Simple Geometries

To check the numerical schemes used in this investigation, preliminary

computations using a sphere and a cylinder of finite length were obtained.

The results are presented ir. Section III of Appendix B. En all cases, 20

subintervals were taken in the r - a plane and a 20-point Gaussian quadrature

was used to evaluate the integrals in the tangential direction. The results

for these simple geometries can be summarized as follows :

(1) The coupling parameter used in the Burton and Miller (cv in Eq. (23)

Appendix A) should be taken as i/k where k is the wave number and

i is

8
- -~ - -  -1

~~~~~~~~ aa.~
a-- --- 

- — - - —- —



(2) For the cy linder, the error in the computed results increases with

increasing frequency. For continuous boundary conditions the error

is less than 107. at all frequencies.

(3) Discontinuous boundary conditions, where the admittance is specified

over part of the surface and a forcing function over the remainder,

decrease accuracy of the results. The computed and exact values agree

to within 107, for low nondimensional wave numbers (i.e., ka< 5 where

a is the radius of the cylinder). Errors of 407, at the point of dis-

continuity occur at a nondimensional wave number of 10. The remainder

of the points agree to within 127, at this frequency.

(4) In the tangential plane, the spatial distribution of the acoustic

potential varies as cos m e where m is an integer. Increasing m

does not affect the accuracy of the results significantly e

(5) The computed far field acoustic potentials are at least as accurate

as the computed surface potentials.

(6) The far field results are accurate at distances greater than the

length of one subinterval from the surface.

B. Inlet Configuration

The studies of the acoustic fields of the sphere and cylinder served to

evaluate and refine the numerical procedures and programming techniques. The

next configuration investigated was an inlet used in a study by NASA
6
. This

inlet is shown in Fig. 1 and it was chosen because:

(1) unlike most inlets used in research studies, it does not have a bell-

mouth shape but is shaped like a typical inlet used in existing

aircraft;

9
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(2) complete details on generating the inlet boundary are given; and

(3) it is being used in a related study being conducted at Georgia

Tech concerning the prediction of the sound field inside the

inlet; so the sound field, at least inside the duc t, can be com-

pared with results obtained independently by other numerical

methods.

The back side of the inlet is presently assumed to be spherical,

To obtain exact results for comparison with the numerical computations,

a spherical source was assumed to be placed at (r ,z) = (0,0), The acoustic

potential and normal velocity for this source can be readily computed at

every point. In particular, they can be computed on the surface of the

inlet. The value of the normal velocity at each point along the surface of

the inlet is then used as the boundary condition in the integral equation,

From this boundary condition the value of the potential can then be numerical-

ly computed using the techniques described in Chapter III and compared with

the exact potential known from the spherical source solution. As seen in

Fig. 2 , the normal acoustic velocity distribution, which represents a forcing

function is highly discontinuous and it provides a severe test of the numeri-

cal techniques employed.

The numerical and exact solutions for the surface acoustic potential are

compared in Fig. 2 for 32 and 54 subintervals taken a long the perimeter of

the inlet in the r - z plane, Because of the errors in approximating the lengths

of each subinterval, the exact solutions differ slightly as the distance along

the perimeter S increases. The centerbody in Fig. I extends from O<S<0.8,

the fan inlet covers O .8<S< 1.4, the interior contour extends frotn l.4<Scz3.5,

the exterior from 3,5<S< 5.5, and the circular arc lies within the interval

11
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5.5< S< 7.45. Increasing the number of points decreases the error pro-

portionately as indicated by the data in Fig. 2 at a nondimensional fre-

quency to a of unity, where a i.s the radius of the inlet at the fan entrance

section. The absolute average error in the results decrease from 10.2 per

cent for 32 subintervals to 4.16 per cent for 53 subintervals. The computa-

tion time increased from 53 seconds to 143 seconds, respectively.

As shown in Fig. 3, the errors increase with increasing frequency, Like

the cylinder, the maximum error of the potential for the inlet configuration

occurs at the points of discontinuity. The average error increases from 4.16

per cent at ka= 1 to 15 per cent at ka= 10.

For the data in Figs, 2 and 3, the acoustic potential is assumed constant

in the tangential plane. The results for a cos(me) distribution are presented

in Fig. 4 at ka= 2. These results show the insensitivity of the accuracy

of the computed results to the tangential distribution for m =1 , 2.

Based on the results obtained thus far, the numerical and programming

techniques are capable of yielding reliable results for arbitrary geometries

and boundary conditions. At higher frequencies,(ka<5) it appears that more

points must be taken to increase the accuracy of the computed results .

Next year , experiments will be conducted to measure the acoustic field

radiated from an open—ended pipe for comparison with the computed results.

A parametric study of the effect of the placement and quality of sound treat-

ment on sound abatement in an inlet configuration will be conducted. Further

improvements in the progranzning and numerical methods will also be investi-

ga ted.
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Abstract

This paper is concerned with the development of a procedure f or generating

the sound fields radiated by arbitrarily shaped , three dimensional bodies from

an integral representation of the solutions of the Helinholtz equation. The

method of Burton and Miller is employed to eliminate the nonuniqueness in the

I
external Helmholtz formulae which occurs at the internal eigenfrequencies of

the geometry under consideration. Also, a representation of the most singular

component in the Burton and Miller formulation is developed resulting in an

integral equation which is amenable to numerical solutions. A simple numerical

scheme is introduced which reduces the large amounts of computer storage and

time normally required for the solution of similar problems. This numerical

scheme is then used to obtain solutions for the radiated sound field generated

by a vibrating piston set in a sphere. The numerical solutions for the surface

and far field sound patterns are compared with exact analytica l solutions and

deviations of ten percent at most are noted. Since the symmetry of the sphere

was not taken advantage of in these computations, the numerical schemes employed

are applicable to general three dimensional sound radiation problems.

I. Introduction

The development of a simple analytical form and an efficient numerical method

for the prediction of the characteristics of the sound fields radiated by three

dimensional bodies is the main concern of this paper. Such prediction techniques

have a variety of applications in science and engineering ; for example , the de-

termination of the sound fields radiated by aircraft and underwater vehicles.

The approach developed in this investigation is by no means limited to acoustic

radiation problems as other wave pheromena are governed by similar equations.

Thus, the analytical and numerical methods employed here are also directly ap-

plicable to other fields of engineering such as electromagnetic antenna theory

— . - - ._ 
- .,-.~~.‘- - - ~-_ - - ._ .  ~~~~- . _______________________________________



2

and wave scattering problems.

This research was undertaken with the objective of determining the app lica-

bility of certain integral equation formulations for the exterior Heltoholtz

problem in the prediction of the radiated sound fields produced by three di-

mensional bDdies. In principle , integral formulations appear very attractive

as they (1) eliminate the need to consider the infinite domains normally associ-

ated with radiation problems; (2) reduce the dimensionality of the problem by

one (e.g., from a three dimensional partial differential equation to a two di-

mensional surface integral equation); and (3) can readily handle arbitrary

geometries and boundary conditions. All three properties are very advantageous

from a computational point of view as the first two significantly reduce the

computer storage requirement for solution and the third eliminates the need to

extensive ly modify the computer code when the geometry or the boundary condi-

tions are altered.

Difficulties arise, however, in the use of the Helrnholtz formulae as their

solution depends upon the numerical evaluation of singular, oscillatory inte-

grands.
1 5  

Also , most external boundary integra l representations suffer from a

nonuniqueness of the solution at frequencies corresponding to the eigenfrequen—

cies of the associated internal problem of the same geometry .
6 8  Keeping these

difficulties in mind , the work presented in this paper is specifically concerned

with the following problems : (1) the development of an accurate and efficient

numerical scheme for handling the oscillatory, singular integrands encountered

in the application of the Heltnholtz formulae ; (2) the determination of the most

eI~ ective procedure for handling the nonuniqueness of the radiation solution at

eigenvalues of the associated internal acoustic problem ; and (3) the determination

of the accuracy of the resulting solutions.

- —‘- —‘=,—-- --
___________________ - - - - — - .- ea,

_ -
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While there are many papers in the literature (e.g., see Refs. 1-8) dealing

with integral solutions of radiation problems, none of these addresses the im-

portant problem of determing the applicability and relative efficiency of the

various integral formulations and numerical procedures which can be employed to

obtain the desired solutions. Instead, most of these investigations are limited

to discussions of the potential advantages of the use of certain integral form-

ulations, various possible approaches for the numerical solution of the result-

ing integral equations, the nonuniqueness of the solutions of the integral

equations which govern the radiation problems, and potential means for allevi-

ating this nonuniqueness problem. The few papers (e.g., see Refs. 1-6 and 9)

that deal with the numerical solutions of specific problems are either limited

to two dimensional problems or three dimensional problems with simple boundary

conditions , such as perfectly reflecting surfaces, which greatly simplify the

analytical form and the numerical solution procedure. In the present investi-

gation the analytical and numerical schemes are applied to problems involving

general boundary conditions.

II. Theoretical Considerations.

In this section an outline of the development of the theory upon which the

calculations are based is presented. The basic integral representation of the

solution of the Helinholtz equation is rigorously developed in Ref. (10) and will

not be repeated here; however, derivations that are directly related to the pres-

ent investigation are presented in detail.

A. Formulation of the Integral Equation

The standard three dimensional Helmholtz formula for an external (radiation)

- 7,10problem is

r j ’ {~ (Q) ~G(P ,Q) 
- G(P ,Q) ~~~Q) }dSq = 4

Sq q q

(1)

- - - - -
. . . ..~~~~~~ 
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(See Fig. l .)  where G(P,Q) is a fundamental solution of the Helmholtz equation;

that is:

eikr(l) ,~~G(P,Q) = 
r(P,Q) (2)

and k is the wave number. In Eq. (1) represents an outward normal deriva—

tive with respect to the body (i.e. inward with respect to the exterior region)

of the function with respect to the variable Q; i.e.

~3(p (Q) _
—. (Q) -.

~Ilq 

_ V
q CP •

~~c1 (3)

where 
~
p is the acoustic potential.

Introducing the modified admittance, Y, defined as

Y( Q) = / ~p(Q) 
(4)

Eq. (1) can be rewritten as

$ S ~ (Q) { ~G(P~Q) 
- G(P ,Q) Y( Q) } dS

q 
= 4~~~ (P) (5)

q
q

Thus, using Eq. (1) or Eq. (5), the acoustic potential cp(P) at an~ point out-

side the surface of the body S can be determined if the acoustic potential on

the surface of the body cp(Q) and either its normal derivative (the acous-

tic velocity) or the admittance Y(Q) ott the surface of the body are known.

If the point P is allowed to approach the surface of the body, Eq. (5) be-

comes

J $ { ~G(P~Q) 
- G(P,Q) ~~~Q) } dS

q 
=

Sq 
q q (6)

- —--— - - a e~.e -
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if the surface S is sufficiently smooth. Using Eq. (4), Eq. (6) becomes

Si ~(Q) { ~~~~~~~~ 
- G(P ,Q) Y(Q) } dSq = 2ri~~(P) (7)

q

*The integral Eqs. (6) or (7) can now be solved for the acoustic potential on

the surface if either the acoustic velocity or the admittance is known at each

point on the body. Also if the acoustic velocity is known over part of the

body (i.e. the driving surface) and the admittance over the remainder, Eq. (6)

may be applied on the driving surface and Eq. (7) over ~:he rest of the body.

Both G and its first normal derivative with respect to the variable Q,

which appear in the kernels of Eqs. (6) and (7), become singular when the

point Q approaches the point P on the surface (See Eq. (2).). It can be shown,

however, that the integrals are regular in spite of this singularity of the

kernels, and no analytical problems arise because of it. However, the singu—

lar kernels do present numerical difficulties which will be discussed in 
-

Section III.

An analytical problem does arise in the solution of Eqs. (6) and (7) when

the wave number k, which appears in the simple source solution C (See Eq (Z).)

approaches a resonant frequency (i.e. an cigenvalue) of the related internal

problem.7’~~ At these frequencies Eqs. (6) and (7) do not yield a unique solution.

B. The Uniqueness Problem

Since the uniqueness problem occurs only at certain wave numbers corres—

por.ding to internal eLgenvalues it might be su’~~ested that ~he ~roblen be

simply avoided by considering only wave numbers which are not close to internal

* It will be noted here that Eq. (7) yields a homogeneous set of equations if

only the admittance is known. Thus to obtain a unique solution the acoustic

potential must be known on part of the body.

- — -
~~~~

— —~~ - -
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eigenvalues. Th is is not feasible, however , because: (1) if the body is truly

arbitrary in shape the internal eigenvalues are not known a priori and the

corresponding internal problem would also have to be solved in order to de-

termine what wave numbers to avoid ; (2) the integral equation is discretized

for numerical integration, which results in a system of algebraic equations,

so that there is no longer a specific value but a range of values at which

the coefficient matrix becomes ill-conditioned which results in large numeri-

cal errors ;* and (3) the interval between successive cigenvalues decreases

with increasing wave number and it becomes impossible to stay “sufficiently”

far away from the internal eigenvalues at high wave numbers (e.g., k on the

order of 10).

It has been suggested6 that one method to assure the uniqueness of the

solution is to obtain an overdetermined system of algebraic equations by com-

bining the system of algebraic equations generated from the standard integral

equation (e.g., Eq. (6)) with additional algebraic equations generated from

the integral relation

$ ~ 
{ cp (Q) - G(P ,Q) ~~(Q) } dS

q 
= 0

q q (
q

where the point P lies inside the surface S. There are two problems with this

approach. The first is determining the number of extra relations required to

“pick—out ” the proper so lution from the set of possible solutions of the non-

unique integral equation ; and , the second is choosing the placement of the

* If the admittance is non-zero the internal ~igenvalues of the problem are in

gene ral complex . However , even if only real wave numbers are considered the

nonuniqueness prob lem s t i l l  exists if the imaginary part of the complex eigen —

value is su f f i c i en t ly  close to zero .

--.-—.—.-
~~~~~~~

--,—- .——..-—. __-~~
--- -;-_ — - -  —- ————-

~
- -a-. -— a- 

~~~
— — --—
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points which are used to generate the extra relations. As there is no knowu

procedure for choosing either the optimum number of extra relations or the

points from which they are generated, this method can not be relied upon to

give consistently good results.

Ursell
12 

has suggested that the uniqueness problem be avoided by the use

of a different fundamental solution (i.e. a different C function ; see Eq. (2)).

Although the use of a different fundamental solution does not change the re-

sulting integral equations and analytically eliminates the uniqueness problem

rather elegantly, the function itself is difficult to construct numerically as

it entails the computation of infinite series. Thus the elegance of the method

is offset by the large increases in computer time and storage required for its

implementation, especially when considering three dimensionaL problems.

Another method for overcoming the uniqueness problem is based upon the

fact that a unique solution can be obtained by solving a modified integral

equation consisting of the original integral equation (6) and its differen-

tiated form7, that is

1$  { ~~ 
~
2
G(P,Q) 

- ~G(P~9) ~co(Q)} dS ~=2n
~np~

n
q ~fl

p ~tt
q 

q 3n

Equation (9) also describes the behavior of the acoustic potential on the sur-

face of the body , and it has a set of related internal eigenvalues which is

mutually exclusive of the set of related internal eigenvalues of Eq. (6). Thus,

neither equation ever fails to yield a unique solution at the same k value as

the other. Using this fact, the following linear combination of Eqs. (6) and (9)



U

{ ~G(P~Q) - G(P,Q) ~~~
Q)L
}dSq

q q

+ 

~ ~q$ 
{ ~~~ - 

a~~;.Q) 
~~~~ 

} dS~ (10)

= 2rr (cp(P) + a )

where a is a coupling constant, should yield a unique solution for all values

of the wave number k.

Specifically, Burton and Miller
13
, have shown that the following relation-

ships exist between the coupling constant a and the wave number k

Im (a) � 0 -
~~ k real or imaginary

liii (a) = 0 -. k complex (11)

which assures a unique solution. Unfortunately , the differentiated forti of the

integral equation (9) contains the following term

~_G(P~Q) dS

s 
V a p q  q (12)
q

which is strongly singular as the point Q approaches the point P. Because of

its singular form this term cannot be directly integrated numerically.

Two methods for approaching this problem have been suggested. The first

solution is to “regularize” the singular component by an integration of the

entire equation
14 

(See Eq. (10).). This method requires an excessive amount

of computing time as an additional integration must be performed over the

surface of the body. The other approach suggests the use of a transformation

to interpret the singular integral
15 
(See Eq. (12).). In Ref. (15) two alternate

- - .

~

--

~

------ . -- .- - .-
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forms of the singular integral are put forth. The first requires further manipu-

lation to be of use as it contains yet another singular integral. The second

requires an excessive amount of computer storage space as it necessitates addi-

tional information that will allow the computation of the tangential derivative

of the acoustic potential on the two dimensional surface of the body. It must
I

also be noted that the acoustic potential is the unknown in most problems so

that some differencing procedure is required to generate the solution ~(Q).

C. Treatment of the Singular Integral

In this section the first relationship developed in Ref. (15) (See pp.

1283-1284.) is used as a starting point for deriving the desired expressions.

It is shown in Ref. (15) that

2
~ G(P ,Q) dSJ an~~n q

p q
q

— = 

~ J c~(Q) (np.nq) VP ~ 
Vq 

G(P ,Q) dSq
S
q (13)

+ c~(Q) (n~ x flq) • (v~ x vq G(P ,Q)) dS
q

- 

~
q

J ~(Q) flq ~ Vq x (n~ x VP 
G(P ,Q)) dS

q

The first two integrals on the right hand side are regular; however, the third

is not. It is also shown that after some manipulation an alternate form of the

third term is

~nq 
X Vq c~ (Q) ] . Lnp x C(P ,Q) ] dS

q (14)

_____________ — .—,_ .~~_,-~~~~

____
~
•____ __ _ - — .- -a-—---- - --- —.. -- —
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This integral is regular so that the singular integral has been shown to

be equivalent to the sum of three regular integrals. It  shou ld be noted that

the first term in this integral, ~nq 
x Vq cp(Q)], is the tangential derivative

of the acoustic potential on the surface of the body alluded to in the previous

subsection0

An interesting property of this integral, Eq. (14), is that if the acoustic

potential cp(Q) is a constant on the surface of the body, the integral is zero

as in this case fl
q 
x Vq cp(Q) 

= 0. Since the two formulations are equivalent it

follows that

- J $ ~ (Q) fl
q ~ Vq 

X (n~ x G(P ,Q)) dS
q

q (15)

= 

~q

5 ~
fl
q 
X Vq c~(Q)j . x v~ C(P Q)J dSq

Writing the third integral on the right hand side of Eq. (13) as

- ~q
S(CP (Q) - cp(P)) tt

q • Vq 
x (ri

p 
x G(P ,Q))  dS

q

(16)

- ~p(P) 

~q

5 
fl
q ~ Vq 

X (n x V~ G(P ,Q)) dS
q

where cp(P) is a constant with respect to the variable Q, we see that the last

integral is identically zero by setting cp(Q) a 1 in Eq. (15).

H~nce , the first term in Eq. (16) is not only r egular  but .  i t  can aLso be

readily integrated numerically. As point Q approaches point P the ent ire  in-

tegral goes to zero . Thus it has been shown that the singular integral which

appea r s in the “unique” formulation of this problem can be expressed in the 

—- - — — -  . - --.--—-.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-—.--
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following form

~qS ~
(Q) dSq

= j’ $ c~(Q) (n
i, . 

fl
q) v 1, ~ Vq G(P ,Q) dS

q
s
q 

(17)

+ 

~q

5 c3(Q) 
(n~ x flq) . (v~ x Vq G(P,Q)) dSq

- 

~q

1 
Lcp(Q - c~(P)] flq ~ Vq 

x (ri
g 

x G(P ,Q)) dS
q

which will be used in the numerical computations of this paper.

D. Computational Considerations

Because of the special form of the fundamental solution of the Helmholtz

equation, G(P ,Q) = G(Q ,P), (See Eq. (2).) certain simplifications can be made;

specifically

Vq 
G(P ,Q) = - V~ G(P ,Q) = k2 G(P ,Q)

(18)
V
~ 
x V

q 
G(P ,Q) = - Vq 

X Vq 
G(P ,Q) = 0

Using the above relationships Eq. (17) can be rewritten as follows:

~~~~~~~~~ dS
q

= — 

~
q

J cp (Q) (n~ . fl
q
)(~~k) 2 G(P,Q) dSq (19)

- 

~qS ~~ 
- ~(P)] flq ~ 

x (n~ x G(P ,Q)) dS
q

-- _  --
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To reduce Eq. (19) to a form more amenable to numerical computation it is

convenien t to let 
~~

Q) = 1 so that

r I ~
2G ( P Q )  dS. i .~ a n a ~p q

q (20)
= - $ $ (n~ . fl

q
)(~k)2 G(P ,Q) dSq

S
q

Using Eq. (20) the left hand side of Eq. (19) can be rewritten as

S $ a
2G(P 0Q)

an an qp qS
q

= $ S L~
) 

- ~p(P)] ~
2
G(P,Q)

dS (21)an an qp qS
q

- cp(P) $ $ (n
p. 

ri
q 

)( ik)2 G(P ,Q) dS
q

S
q

If Eq. (2) is employed and the indicated differentiations are performed

the righ t hand side , Eq. (21) can be rewritten in the following form

ikr(P ,Q) - 2 3 i k 
+ 

2 1$ $ ~~ 
- cp(P)] r(P,Q~~ 

{ L~ 
- ____ _ _ _ _ _ _ _

[r(P,Q)]q

n .nar(P.Q) ~r(P~Q) p q 
______

an an - r(P,Q) L ik - 
r(P,Q) ] } dS

qp q

i kr (P , Q )
- 9(P) J j  r (P Q) ( i k ) 2 (n . n ) dSp q

S (22)q

where ar(P1Q) 
= 

~~ r(P,Q) . . Using the results  developed in this sectionp p
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the formulation of Burton and Miller’3 (See Eq. (10).) reduces to

ikr(P,Q) 1 a (P Q)
~(Q) 

~~~~~~ (ik - 

r(P,Q) ~ an~ 
dS

q

_________ 
2

- a p (P) 
‘

~q

5 r(P,Q) (ik) (n . flq
) dS

q

- -  ikr(P,Q) 
~
- 2 3 

_________+ a 

~q
5 ~ 

- cp(P)] r(P Q) { 
~~ 

- 

r(P,Q) + 
[ ] 2 ]

ar(P,Q) ar(P,Q) 
- 

~~ • g (th 1 
~ 

1. dS
anq 

r(P,Q) r(P,Q) j q

- r ~(Q) e~~
’
~
1”
~~ dSJ i an r(P,Q) q

q
q 

-

r r ~~(Q) eikr(P ,Q) 
k 1 — ar(P,Q)a j  j an r (P,Q) ~ 

- 

r(P,Q) an q
q

q

= 2 TT (cp(P) + a a-~
(P)

p (23)

The above equation , although it may appear more complicated, is actually

considerably simpler from a numerical point of view than solving Eq. (10) with Eqs.

(
~~) and (14). In surrirnary, the above formulation of the sound radiation problem

provides unique solutions at all wave numbers k and contains no singular integrals.

[II. Numerical Consjderations~

To determine the radiated sound field generated by an arbitrarily shaped

three dimensional body, Eq. (23) must first be solved for the distribution of

the acoustic potential on the surface of the body, p(Q). Then this data needs

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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to be substituted into Eq. (1) to determine the radiated sound field. Inspection

of Eq. (23) indicates that all of the integrands appearing in this equation are

both oscillatory and singular due to the factor ~~~~~~~~ which appears in
r(P,Q)

each. Therefore care must be exercised in the numerical representation of these

kernels.

When considering the numerical evaluation of an integral on an arbitrary

two dimensional surface, such elegant computational methods as Gaussian quad-

rature
16
’
17 

(which has been found by the authors of this paper to yield accurate

results in two dimensional sound radiation problems18) cannot be used in the

numerical representation of the kernels. The only simple approach available to

obtain a more accurate representation of the kernels is to evaluate them at

more points on the surface of the body. Unfortunately, this is usually accom-

panied by an attendant increase in the size of the coefficient matrix which

must be solved to obtain the acoustic potential. The computer time required

— 
to solve this matrix goes up roughly as the square of the number of unknowns

for most methc.ds of solution (e.g., Gauss-Jordan reduction).

Two considerations enter into the determination of the size of the coeffi-

cient matrix: (1) the heuristic determination of the number of points required

on the surface of the body to represent the acoustic potential to the desired

accuracy; and (2) the computer time and storage space available to solve the

coefficient matrix resulting from the discretization of the integral equation.

The storage space available is usually much smaller than the number of

points required for the accurate evaluation of the singular, oscillatory kernels.

lii vic’w of the above considerations the following scheme is used to obtain

a numerical solution. First, the surface of the body is divided into a number

of area elements which corresponds to the number of points where the acoustic

potent ia l  is to be calculated on the surface. It has been determined that

be t t e r  resu l t s  are obtained in general if the area elements are “regular” (i.e,
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not too elongated in any direction), although the exact shape is unimportant,

— 
arid they should be of roughly equal area. A point is then chosen in the “center”

of each area element (usually the centroid of the plane figure projected to the

body surface). These points will be denoted as calculational points (i.e. P

points) as this is where the acoustic potential will be calculated . Next, each

of the original area elements is subdivided into a numb-er of smaller area ele-

ments, the sum of which corresponds to the number of points where the singular,

oscillatory kernels must be evaluated on the surface of the bOdy to assure their

accurate representation. A point is thus chosen on the surface of the body in

the “center” of each of the smaller area elements as before. These points will

be denoted as computational points (i.e. Q points) since the kernel functions

are computed there.

The calculational points may or may not be a subset of the computational

points on the surface of the body. If they are a subset some computer space
— 

may be saved ; however, the computational point must be avoided when it corres—

ponds to a calculational point (i.e. when the point Q corresponds to the point

P) since the kernels are then singular. Thus each term in the coefficient matrix

is now the sum of a number of terms generated by a number of evaluations of each

kernel function,

Since the integrals are all regular a better approximation may be obtained

by placing computational points closer to the calculational point when one is

close to the singularity of the kerne l function. Thus the computational area

elements may be further subdivided to obtain a more accurate representation of

the integral about the point P.

An illustration of how the above procedure is accomplished is presented

be low using Eq. (23) which is rewritten in the following more compact form

—. - —~~~~~~~~~~~~ ~~~~
.-

______________ - - - - -~~~~- -_ - ,i_
~~~
,_. 

~ -
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~qS 
c~(Q) A(P ,Q) dS

q + ;(P) B(P ,Q) dSq

+ JJ  j c ~(Q) - c~(P)] C(P ,Q) dSq 
- 2 n9(P) (24)

a (P)
= 2 11 a + J J D(P ,Q) dS~

p S
q

where the proper form of the integrands can be readily obtained. Next, Eq. (24)

is discretized as follows:

n n

~ cp (Q) A(P ,Q) ~S + c (P) E B(P ,Q) ~S
Q=l Q=l
Q~P Q~P

n - -~

+ E Lc~Q - c~(P)J C(P ,Q) ~~S
Q=l
Q~ P (25)

+ cp(P) 
q~l 

[A(P ,q) + B(P,q)] ~ Sq - 2 ~-r ~ (P)

= E D ( P , Q) ~ S + E D(P,q) ~ S~ ± 2 u a
Q=1 q=l 

q

Q~P

P =

where N is the number of calculational points; n is the number of computational

poinL~ (not inc luding the subdivided elem ent abou t ~), and n i~ cue number of

computational points in the subdivided element. In the above representation the

normal component of the acoustic velocity, ~.,(Q) , on the body is assumed known
anq

and is therefore included in the integrand D(P,Q). Additional input data required

to obtain a solution inc lude: (1) the coordinates of each computational point;



17

(2) the area associated with each computational point and (3) the outward

normal vector at each computational point. The information required at the

calculational points is included in the above.

If the resulting matrix of coefficients is large, there are many iterative

schemes which can be employed in its solution19
; however, if the matrix is small

Gaussian elimination with back substitution may be used. Once the acoustic po-

tential is determined on the surface, Eq. (1) may be used to generate the

acoustic potential at any point in the field surrounding the body. In this com-

putation the point Q never coincides with point P and the integrands are never

singular; however, they are still oscillatory and care must still be taken to

get an accurate representation of the integrals.

Due to the availability of analytical solutions for comparison purposes,

the developed numerical procedure has been applied to predict the sound radi-

ated by a sphere. However, it should be reiterated that no advantage ~‘as taken

— 
of the sphere ’s relatively simple geometry (i.e. its symmetry) in the numerical

computations. Once the needed input data was generated it was treated like any

other arbitrarily shaped three dimensional body. The sphere was subdivided into

80 triangles by first taking an icosahedron (a three dimensional figure whose

surface consists of 20 equilateral triangles) inscribed in a unit sphere and

dividing each triangle into four others (See Ref. (1), pp. 1630-1631.). This

was accomplished by finding the midpoint of each side of each triangle and pro—

jecting it to the sur f ace of the sphere as shown in Fig. 2. The centroid of

each triangle was then found and also projected to the surface of the sphere,

These 80 points correspond to the previously described calculational points.

To obtain the computational points this method was simply repeated three

more times yielding 5120 points. Around each calculational point the three sur-

rounding triangles were then divided once more, and at the calculational point

— —,.———.- -—---- --—--——— - — —-,— — - -- - - - -n- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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itself the triangle was divided twice more as shown in Fig. 3. The spherical

area was then computed for each computational triangle (i.e. the sum of the

areas of all the computational triangles is 4 ir, the surface area of the unit

sphere). This yielded all the geometrical input data required, as; for a unit

sphere the coordinates of the computational points and the elements of the
I

outward normals are the same in rectangular coordinates.

IV .Results and Discussion.

In the calculations performed in this study the surface of the radiating

sphere was divided into two parts. On one part (the driving surface) the normal

acoustic velocity, , was specified while on the other part (the admittance

surface) the modified admittance function Y, defined by Eq. (4), was specified

indicating either sound absorption or amplification by this part of the surface

(See Fig. 4 .) ,  The sphere was chosen for this study as exact analytical solutions

can be obtained for comparison with the numerical solutions obtained by solving

the integral equations.

Using the well known separation of variab les technique it can be shown that

the acoustic potential for the sphere can be represented as follows

w(r ,e,~)= hm (C) {(l~~
2
)½n 

~~~ 
P~(~) } {:~: ~ (26)

either on or in the field surrounding the surface of the sphere. In the above

e xpression 1~ = cos ~, c = kr , h is a spherical Hankel function of order rn,

and P is a Legendre polynomial of degree m . It should be noted that when

ii = 0 all ~ dependence drops out so that the problem becomes axi—symmnetric .

20
It can also be shown that the acoustic potential for a piston vibrating

in an otherwise hard (i.e. Y = 0) sphere is given by

cp(r ,O,~~) (
~~~ ~~~~ m=0 

LP’ni (Tho) - 

~m+l 
(1k) ] { m~~~ } P~~(1~)

dC ma o

(27)  

- -— — — - ~~~~~~ ag. - - - — —
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bo th on the surface of the sphere and in the field surrounding it. In Eq. (27),

denotes the edge of the piston set in the sphere, a is the radius of the

sphere , 
~ 

ka, fl,~ = cos 0
~
, P 1 (flu) = 1 (when ma = 0), and the remaining

quantities are the same as those appearing in Eq. (26). The solution is al--

ways axi-symmetric as there is no ~ dependence. Also, both solutions (i.e,

Eqs. (26) and (27)) represent radiated sound fields as they satisfy the

necessary radiation conditions when r -.

In all the calculations performed in this study the acoustic velocity

is specified on a quarter of the sphere 1 s surface as shown in Fig. 4. Also ,

the sphere is of unit radius (i.e. a = 1) and the coupling constant a, re-

quired in applying the method of Burton and Miller , has been taken as the

pure imaginary number i as k is a real number (See Eq. (11).).

The radiative fields computed in this study are suzxnarized in Table I

where the assigned values of m and n describe a specific solution (See Eq. (26).).

For each investigated case Table I contains the exact solutions on the surface

and far fields, the input boundary conditions derived from the known exact

solution, and the average percent error obtained by comparing the exact and

computed solutions.

To check the numerical approach and computer code Case ~ ~ was investigated

initially (See Table I.). Under these conditions the analytical solution for the

surface potential, p = h (k r), is a constant as is the input data (i.e. and Y).

A comparison between the numerical and exact solutions for the amplitude 1cp I of

the acoustic potentials’ on the surface of the sphere and in the far field is

1iresented in Fig. (5) where excellent agreement between the two solutions is

noted. The computation of the surface solution required three minutes of computing

* The amplitude was chosen for comparison as both the real and imaginary parts

of the acoustic potential show similar trends and errors.
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time on the Georgia Tech CDC Cyber 70 model 74 computer. This time is indicative

of all the cases considered in this study, The far field distribution of the

acoustic potential was calculated using both the exact surface distribution

and the calculated surface distribution. The far field calculation using the

exact surface distribution was done as a check on the computer code and the

results agreed with the exact solution (obtained from Eq. (26)) to seven sig-

nificant figures in both the real and imaginary parts. To calculate both distri-

butions simultaneously , under two minutes of computing time was required which

is also indicative of all the cases run.

The second investigated solution (See Case # 2, Table I.) was the same

solution as Case # 1 but with a wave number k = i- which coincides with the first

internal eigenvalue of the sphere. This case was run to check the validity of

the theory, Again the solution for the surface potential and the input data are

constants both on and off the surface of the sphere. A comparison between the

computed and exact solutions on the ~iphere surface and in the far field are pre-

sented in Fig. (6). Examination of this figure indicates that in this case the

agreement is not as good as in Case lfr 1, although the average error was still

under ten percent. The far field distribution of the acoustic potential was cal-

culated as before. Employing the exact surface distribution the results compared

with the exact far field solution to four significant figures in both the real

and imaginary parts. In examining Fig. 6 it is interesting to note that there

was no increase in the error from the surface distribution to the far field. It

was found that there was no significant increase in error from the surface to

the far field distribution in any of the cases run.

The exact solution for Case # 3 (obtained from Eq. (26) with the data in

Table I) is ~p = h
1 (Icr) cos 0. In contrast to the previous cases this solution

is 0 dependent. A coinparision between the exact and numerical solutions on the

surface of the sphere is presented in Fig. 7, and a far field comparison is pre-

- s~~~~~ o-r -
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sented in Fig. 8. Exaxninatior~ of the data shows that in this case the error

was actually reduced in going from the surface to the far field. Furthermore

in the far field , the calculated surface distribution gives better results

than does the exac t surface distribution .

The next case investigated (Case Ift 4) was run at the second internal eigen-

value of the sphere, k = 4.49340946. The results for the acoustic potential on

the surface of the sphere are presented in Fig. 9. As can be seen the results

deteriorate somewhat at an internal eigenvalue of the problem, It is interest-

ing to note that the error increases with B and it reaches its maxim~.~ value

at e = 1800, the center of the admittance surface. The results for the far

field are presented in Fig. 10. All of the cases considered so far were axi—

symmetric , that is, there was no ~ dependence ; a property that was also retained

by the developed numerical solutions.

This next case (Case # 5) is truly three dimensional as there is a ~ dc--

— pendence in the solutions. Referring to Eq. (26) and Table I the exact solu-

tion on the surface of the sphere is found to be 
~
p = h

1
(kr) sin ~ sin ~~~. The

average percent error was not calculated in this case due to the zeros which

appear in the exact solution, but the errors remained small (i.e. under ten

percent). The far field distribution of the acoustic potential was calculated

and no increase in error was detected.

In the next three cases a hard sphere (i.e. Y = 0 on the admittance sur-

face) with a unit driver (i.e. = 1 on the driving surface) was considered.

The exact solutions for these cases can be obtained from Eq. (27). In these

studies the wave number k was varied to determine the value of k at which the

accuracy of the solution deteriorates for a fixed number of 80 calculational

points that was used in these numerical studies, 

— ---- -‘~~~~~,w.- 
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The solution for Case # 6 where k = 2, are presented in Fig. 11 for both

the surface distribution of Icp l and the far field solution, In this case the

far field is considered to be at kr = 100.

In this next case (Case # 7) the wave number is increased to Ic = 5. As

can be seen from Fig. 12, the error is still under ten percent on both the

surface of the sphere and in the far field (i.e. kr = 100). When the wave

number is increased to k = 10 (Case # 8) the error becomes rather large. The

average error in the calculation of the surface potential is sixty percent.

So it can be seen that there are not enough calculated points to accurately

represent the potential function, p. The far field is calculated at kr = 100

and the error drops a bit but it still remains high at twelve percent .

V. Summary.

In s~msnary, a solution approach has been developed in this paper which

may be used to yield a unique solution for the distribution of the acoustic

potential on the surface of an arbitrary three dimensional body at all values

of the wave number, Also, a numerical scheme was developed to solve the equa-

tion accurately and efficiently. Computer programs were run to verify the

applicability of the developed solution method and to find its limit of accu-

racy for a fixed number of points. The procedure was found to be both accurate

and versatile as the computer code required no major modifications to handle

the various boundary conditions imposed on the surface of the body.

Acknowledgement

The authors would like to thank Prof. N. P. St-ill yhrass for the many helpfu l

discussions concerning some of the theoretical aspects of this paper and Lt. Cal.

Lowell Ormand , Grant Monitor for his support.

- ~s~~b _ ’ - -- a-fl--- - —
_ _  5- -

~~~~~~
-- - --

____________ - - ---- - - —-—-—. — ae__ - -



References

1. Chen, L. H. and Schweikert, D. C., Oct. 1963, Journal of the Acoustical

Society of America, Vol. 35 , No. 10, pp. 1626—1632, “Sound Radiation

From an Arbitrary Body”.

2, Banaugh, R. P. and Goldsmith, W., Oct. 1963, Journal of the Acoustical

Society of America, Vol. 35, No. 10, pp. 1590-1601, “Di f f rac t ion  of Steady

Acoustic Waves by Surfaces of Arbitrary Shape”.

3. Chertock, G,, July 1964, Journal of the Acoustical Society of America,

Vol. 36, No. 7, pp. 1305-1313, “Sound from Vibrating Surfaces”.

4. Greerispan, D. and Werner, P., 1966, Archives of Rational Mechanics and

Analysis, Vol. 23, Pt. 4, pp. 288—316, “A Numerical Method for the Exterior

Dirichlet Problem for the ~educed Wave Equation”.

5. Copley, L. C,, Apr. 1967, Journal of the Acoustical Society of America,

Vol. 4, No. 4, pp. 807-816, “Integral Equation Method for Radiation from

Vibrating Bodies”.

6. Schenck, H. A., Jan. 1968, Journal of the Acoustical Society of America,

Vol. 44, No. 1, pp. 41-58, “Improved Integral Formulation for Radiation

Problems”.

7. Burton, A. J., Jan. 1973, NPL Report NAC 30, National Physical Laboratory,

Teddington Middlesex, “The Solution of Helinholtz’ Equation in Exterior

Domains using Integral Equations”.

8. Jones, D. S., 1974, Quarterly Journal of Mechanics and Applied Mathematics,

Vol. 27, Pt. 1, pp. 129—142, “Integral Equations for the Exterior Acoustic

Problem”.

9. George, R. C. Tai and Richard P. Shaw, Sept. 1974, Journal of the Acoustical

Society of America, Vol. 56, No. 3, pp. 796-804, “Helmholtz— Equation Eigen—

values and Eigenmodes for Arbitrary Domains”.

- - --..—-— .--- — --—-- - - -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~__w~~~ 
— — —- ——-—- — --.r~~~ - -



24

10. Baker, B. B. and Copson, E. T., 1950, The Mathematical Theory of Huygens’

Principle, Ch. I, Oxford at the Clarendon Press.

11. Jones, D. S., Ju ly 1974, Proceedings of the IEEE, Vol. 121, No. 7, pp. 573

582, “Numerical Methods for Antenna Problems”.

12. Ursel]., F., 1973, Proceedings of the Cambridge Philosophical Society, Vol.

74, pp. 117-125 , “On the Exterior Problems of Acous~~cs”.

13. Burton , A . J. and Miller , C. F., 1971 , Proceedings of tt~~~~~~ a1. Society

of London, A323, pp. 201-210, “The Application of Integral Equation

Methods to the Numerical Solution of Some Exterior Boundary Value Problems”.

14. Panich, 0. I., 1965, USP. MAT. MAUK., 20, Pt. 1, pp. 221—226, “On the

Question of the Solubility of the Exterior Boundary Problem for the Wave

Equation and Maxwell’s Equation,” (Russian).

iS. Stallybrass, M. P., May 1967, Journal of Mathematics and Mechanics, Vol. 16,

No. 11, pp. 1247-1286, “On a Pointwise Variational Principle for the Approxi-

— mate Solution of Linear Boundary Value Problems”.

16. Abramowitz,M.and Stegun , I. A., E~~.., May 1963, Handbook of Mathematical

Functions, Ch. 25, Dover Publications , Inc., New York (5th Printing)

17. Scheid , F., 1968, Theory and Problems of Numerical Analysis , Ch. 15, McGraw--

Hill Book Co., New York.

18. Bell , W. A ,, Meyer , W. L. and Zinn , B. T., July 20-23, 1976, 3rd AIAA Aero—

Acoustics Conference , Palo Alto , Calif., AIAA Paper No. 76-494, “Predicting

the Acoustical Properties of Arbitrarily Shaped Bodies by Use of an Integral

Approach”.

19. Isaacson , E. and Keller , H. B., 1966, Analysis of Numerical Methods, ch. 2,

John Wiley & Sons , Inc., New York.

20. Morse, P. M. and Ingard , K. U., 1968 , Theoretical Acoustics , p. 343, McGraw—

Hill , Inc., New York.

__________ 
___________ —5 -- -—- — —-----—-— -—-,. — — —



_______ _______ 

25
I——

C O
0 cj~~~h

.4’ C
C O  .—1 0’ C”) ,—1 o n
01.~ V V V V n o

“-4 “-4
‘.0 C’J ‘.0

C) .
..-~ 1 .-4 4

+ + + + +
u, i.J ’ 0 0 C” l 0 (‘-1
C •,4~~~>—4

•~ .g ~~ 
.-i .-4 — .-4

.t~ 
< ‘ ‘ ‘ I

0
Co oo u

C .,-i QD
—1 0 0’ -,~4 liP

i 1.4 03 (‘) CO C’~
0. ~i .-4 0) C’J 0 .-i C
~ U) • •-4

~~~ ‘ 0  . 0  •~~.4
H II .-4 ,—~~cj 0

+ ± 1 +~~~3C~~~~C +
~-i ,oI,o 0 U’) ‘.~0• 03 r—
•,-4 0 ,—~ 

a—.
1., 0 • 0 0)

I . 0
o 0 I 0

5— ‘-, 5._~

__5
CO CO 0

CD 0’ CD a’i
4

0’ 0. O u  0 0 )  0 . .-4 14
0 0  0 0  0 0 )  C)

.0 0 0 • Q  • 0  •
—4 • . 0 0 0 CD
O 0 0 + + + C
~~~~Il I I r— N. N..,-4 C

9. .4’ 4- ‘.0 0 )
U) 1—’ C’1 03 CO to ‘0 ‘~~ ‘

C C l.~
) Lf) 0 0 0 c: ’0

o ~i4 0 0 0 0 0
0 0 .

— 
1., . . 0 0 0 

• 
.0

0 0 I , ,
5-’ 5-’ ‘

o
_____ ______ ______ ______ ______ 0

U C)
o ~~

s 
~~

s

C ~ 4 Q  CD •r-l bfi C”
:‘4 ‘-4 ‘-4 ‘-4

0 0 U~~U) 0)
C) 4- •,-4 ~f l 0  0 c’-i ..-4
C I I  U’) • C )  Ci . 0 )
‘1-I • to 0 0

0 .-4
$ r

Cl) Li’) to
0 C—I

-~ -~~ C5.I 4 - C O
03 (1 • .

0 0 0
‘-‘ ‘.-

~ 
5-..,

‘C
‘—4
0

14 .4

~4 lxi 0 0 0 0 0
ifl tfl C) 0 0

14 ,..
~

I:z4

0’
4I:: CS-i • C—Si
.4.

C 0 0 0 0

E 0 0 — ,-, ‘-I

0
(0

- ~
5--~ C”) 4 ‘fl

___  - —--—~~~~~~~ _- --_b_.. ---

____ - - - - ._ _  

—



P

I
5-
’

r(P,Q)

nq

Q

S

Fi~ —~r ’ 1. General Descrlpti-Da of t~~ Acous:i~ Radiation Problem.

- — - - 1 “ - “ — - —



27

I

*

*

\ ,7

*

U I

*

* *

*

o Already on Sphere

• Midpoint of Sides Projected to
the Surface of the Sohere

* Centroids of the Plane Triangles
Pro~~’ct o-~ ~ ~~~‘‘ S’:-rfac~ ~f ~~~~~

-‘ S*~”r”’

F’~~~re 2. M’~th~y~ c~ Dividing the Surface of the Sphere.

-— -—- - — - —— - .— - ______________‘~ 
—_ --  — —- — - ~~~~~~—



2~

/ *

0 *

/ *

/ 
_ _ _ _ _ _ _/ Triangle Adjacent to

* 

the Calcu].ationa ]. Point

Original Computational
Element

Original Calculational
Element

o The Ca].culatj onal Point

A. Computational Point

Figure 3. Division of the Surface of the Sphere Around a
Calculgtj ona l Point .

- - —.- -_ -  - -- - - - - - ______ - - 
_____________ 

-



z

Driving Surface

— specified

- 
-

Admittance Surface

/~p specified

Figure 4. Specifications of Boundary Conditions on the Surface
of the Sphere. 

— - - - — ‘ t - .a~~~ ‘ - - — -— ‘ - -  — — ~. - -a O.z r —



I I I I I
I

0.05 
r 

1.0 - O-~ —O 0-a- Q)-0 0—0 0— -
Average 7. Error 0.637.

0.04 0.8 - Exact,Surface -

i 
‘
~~ Exact , Par Field. (kr = 50)

I 0 Computed

~ 0.03 0.6 -

~ 0.02 ~~~~~~~~ 0.4 -----Q- 0-- ---O-~J~---~~-O---0--Q---O- -~
Average 7.. Error = 0.697.

~ o.oi L~ 0.2 -

o L  0 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-

0 30 60 90 120 150 180
O,Degrees

Figure 5. Exact and Calculated Values of I c’ I for ~ = h0(r)
on the Surface and in the Far Field of the Sphere.

I- - ---—- — --— - -- _ _ __ _ • *=_ _ _•~‘_‘- • ___•••
~
__•

~
i__ .5 —- - -- - - -  -—.-- --— r- — --.— -



°•°4r 0.4 I I I I I

I Exact , Surface
I ——— — Exact ,Far Fie]4 (kr=50)

.~~ I 
~ 0 0 Computed

—0
Ci n r~-~ C
U U.U-.) 0 — —

I p~ 
0 c ~ 00  0 Q  0I ~ 

Average 7. Error = 8.77.
S C)

C

~ 0.02 F- ~ 0.2 -——0 0 o~~ ~~o 0 0  0
Average 7. Error 8.77,l o

0 ‘0
‘0 I ~
.~~ 0.0].~

_ 
~ 0.1 -

O U)

1 0 I I I I
0 30 60 90 120 150 180

9, Degrees

Figure 6. Exact and Calculated Values of 
~ 

for ~ = h0(T1 r) on
the Surface and in the Far Field of the Sphere . 

_
_ _

_ _

~~~~~~~~

_
_ - ~~~~~~~

_ -—-- ;-
_ _ ___ _ — -

- 
-

-- - -- - -- ---



0

‘-‘ 0 6 
0,

Driving
Surface

— A diaittance
Surface

+ 90

Exact

0 Computed, 0.2
Average 7. 

~“120
Error = 2,3%.

0 ,4

180

Figure 7. Exact and Calculated Values of 
~ I for ~ = h1(2r) cos ~ on the

Surface of the Sphe re.

_____ - - - ---5- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - — - -  —--.-----—. -- —-- - — - —



0,012 1 I 
—- 

I I

Exact
0 Far Field Computed from Calculated

Surface Distribution, 7. Error = 0.547.
Far Field Computed f r om Exact Surface

0.010 Dist ribution , 7. Error 1.57.

0
0
-4

U

~~ 0,008 . —

0

-‘-4-J

L 
0.006 - -

i-i

(-i-I
0
C)

~ 0.004 - —

0.006 - —

0 I I I I
30 60 90 120 150 180

~~, 
Degrees

Figure 8. Exact and Calculated Values of 
~ 

using the
Exact and Calculated Surface Distribution of ,

for cp h1(2r) cos ® in the Far Field of the
Sphere.

- ———-—-- 
~~~~~~~~~~~~~~~~~~~ - .~~ - - - — — -- — .—-- —- - — - - - 5-& n -ar J



0, Degrees
0.3

30

0.2 
- 

60
•
~ 0.1
U) -

~~~~~~~~~~~~ Surf ace

90

— 

/dmittance 

0

Surface

Exact

0
0 Compu ted , 0.1 20

Average 7.
Error = 137.

0

0.2

I~so

0.3

180

Figure 9, Exact and Calculated Values of for y = h1(4.49r) cos -~~

on the Surfac e of the Sphere . 

- - 5—  ..- -- .—~~~~~~~~~.-. -



0,012 I I I I I
Exact

Q Far Field Computed from Calculated
Surface Potential, 7. Error = 147.

,~~~~ Far Field Computed from Exact
0,010 Surface Potential , 7. Error = 1.97..

0
0
‘-I

U 0
14

0.008 - 
- 0

~ 0, 006 - 0
C)
“-4
lxi

‘.4
C

0
U 

0.004 -

0 .
C-,
‘0
U
-‘-4
C

0.002 - 0

0 I I I

0 30 60 90 120 150 180

9 , Degrees

Figure 10. Exact and Calculated Values of c I using the
Exact and Calculated Surface Distribution of cp
for p = h1(4.49r) cos 2 in the Far Field of the
Sphere .

_ _ _  _ _ _ _ _- - - ---—-— .--.-——-- - — _ •
~~~

__
~~

• _~~~~~~~~~

__
~~ _

___‘_ -- — 
_ 

- - ---.-- - -- — — —‘.
~

.-- - — -



0.012 0.6 I I I I I

I A Exa ct Surface Distribution

I 0 Computed Surface Distribution,
0 Average 7. Error = 87.
o 0,010 1— 0.5 - -

I A Exact Far Field Distribution

I 0 • Computed Far Field Distribution,
Average 7. Error = 5,67.

0 ,008 
~
— ~~O.4 - —

U
C i 0
C) I
U
o I c )

P4 C)
I C

‘0 LI-i A
.
~~ 0.OO6~~_ c ~~O.3 - -

A
L14~ o.oo4~ —~~~o,2 - -

0.002 F 001 - A ê -

I V

0 I I I I 

~~~

I 

~~

0 30 60 90 120 150 180

~~, De~ rees

Figure 11, Exact and Calculated Values of 
~
p for a Hard Sphere

with a Unit Driver (k 2) on the Surface and in the
Far Field. 

—— - - - - - -—  - - - -  - - -.-.
~~~ .-—.. -- -- - -- --,~~~-— . - - -  —---—- —---- --- -~—-——.——..- -. -.5.~~~--.-—-.--- -- -- -



.-~1

I

0
0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I 0.4 I I I I I

~ 0.0151— A Exact Surface Distribution
14 0 Calculated Surface Distribution,

Average 7. Error = 7,7%.U “.4
C C A Exact Far Field Distribution

0.3 - • Calculated Far Field Distribution,
4-) 4-) Average 7. Error = 6,47.
C 0
C) P4
U
o o .oiol— ~P4

‘0 I 4
—

0“.1 
~~ 0,2 - A —P4

A
C

I~
-i 0

— C.’ A
0.005 1— 4~(14

0 
~~o•~ - A

C) I C

U)

>~ I e e  ~oL 0 __________________________

30 60 90 120 150 180

e, Degrees

Figure 12. Exact and Calculated Values of I ~ I for a Hard Sphere
wi th a Unit Driver (k = 5) on the Surface and in the
~~r Field.

‘ “— ——-- ~ 
- — -  —- -— — _~~~~~~~~~~~ .— ~~~~~~~~~~~ 

—



APPENDIX B

- --— -- __-5_ — - - -- --. - - - - —



PEgO ICTION OF THE SOUND FiELD RADiATED FROM
AX 1SYI~4ET~ IC SURFA CES

* **W . I.. Meyer , W , A . Be l l , and B. T. Zion

Schoo l of Aerospace Engineering
Georgia institute of Technology

Atlan ta , Georgia 30332

Abstra c t in this investigation. This techniq ue involv es a
reformulation of the “class ical ’ i n t e g r a l  equ ation

A general analytical method for determining the and the solutions obtained are valid at all frequen—
radiated sound fit lds fuss axi syrimietr ic s u r f a c e s  of d e s .
arbitr ary cross  st- c t hi n with general boundary con— 

The resultin g integral equation for t h e  surfaced i t s o i t s  is d c v e l o p e d . iho method is based on an in— a c o u s t i c  p o t e n t i a l is solved n u m e r i c a l l y  and , f o r
te r ., l ri pri entaccOO if the ex t e r n a l  s o l u t i o n s  of a x i s y l r u n e t r i c g c o rn e t r i e s , the  e q u a t i o n  reduces to
the l l i - I u t h ~~l t z eq u a t i o n  v a l i d  a t  a l l  wave numbers , the e v a l u a t i o n  of a l ine i n t e g r a l .  Thus , t h e  i x i -
the ax i sv i - s a e t r  j e formulat ion of  the problem reduces sy met r i c  case can be reduced to an equiva  l e n t  one—
L i i  so l u t i o n to the n u m e r i c a l  e v a l u a t i o n  of l i n e  d i m e n s i o n a l  p rob lem , th i s  e q u a t i o n  is d i s c r t i z e d
int ’ gt al s by Gaussian quadratur , . the a p p l i c a b i l i t y  and the resulting system of algebraic equations is
Ok the s o l u t i o n  a; r ,idi for both a sphere and 

solved usin g comp lex Gauss—Jordan e- l im ination . Since
flit , c~ di r u s  r o O s t  r u t  d by comparing Lhe 

the c o e f f i c i e n t  m a t r i x  i n v o l v e s  t he  f ree  s p a c e
nuns - n i l  cu siil t s with exact ana l ytical solutions 

Green ’s function , which becomes singular a two
for ,oih d i  s c o n t i n u o u s  and cent inuous boundary con— 

points on the surface approach one another , nume ri—lu lions , 
cal techniques a re  presented which can d c - t i w i t h
these singularities and yield accurate results .1. Introduction 
Gaussian integration is used to inc r ee se - the accura-
cy of the solution without sign ificant penalties in

to i - J u t  e the n o i se  r a d i a t e d  to  the c onmiuni ty  c o m p u t e r  s t o r a g e  and time requirements . The app l ic-f r o m  t n r h o i a n  m u  t s ~ t he e f f e c t s  of sound s up p r e s —  a b i l i t y  of the integral formulation and the accuracy
s eon m u t e r i  ul in the Ln~~t t  and the spatial di stri— 

of the numerical techniques are demonstr ated byl u i u t j o i - t  o t  tin- sound souci’ on the radiated sound 
computing the surface and far field di stributions

l e v i - l i  and patterns must ire determined, Anal ytical 
of the acoustic ;otentia l on both a sphere and a

techniques for predicting these effects must be 
finite cylinder . The numerical results are comparedc u p a h i .  of  d e a l i n g  w i th  ge n e r a l  axisyrtune t r i c  geome— 
with known exact solutions generated by the separa —t r i ~ a and c o m p l i c a t e d  boundary  cond i t ions  which are  lion of v a r i a b l e s  t e c h n i q u e . S u r f a c e s  wi t h  s p a t i a l l y

i n c o u i u t c  red in m u l t i p l y - I  u.ned i n let s  • To d e t e r m i n e  v a r y i n g  f o r c i n g  f u n c t i o n s  and a di n i t t a n c e s  are con-the ra d i a t e d  sound f i e l d , an ad d i t i o n a l  r e q u i r e m e n t  s idered , f o r  d i f f e r e n t  t a n gen t i a l  modes , to evalu-is  th at the m e t h o d s  be app licable to infinite do— 
ate the capability of the integral approach to

t n~~~, Thu ob j c~~t i ve of t h i s  paper  is  to d e v e l o p  a hand le  boundary  c o n d i t i o n s  of a g e n e r a l  n a t u r e .gu- ner al anal ytical method for determining the radi- 
With the sphere , ag reement between computed and

ate d sound ftc-id5 from axisyismetric surfaces of 
exact results is to three significant figures . Forarbitrary cross st-ction and with genera l boundary 
the cy linder agreement is to two significant fig—conditions. 
ures . The effect on the accuracy of discontinuous
boundary conditions involving nonzero adnnittance s

the me thod used in this investigation is based 
over the surface and of the corners encountered in

on in i n t eg r a l  form of the solutions of the He lm— 
the cylindrical configuration are also presented .lu olt z c-quation )- 6 With this formulation the acou s-

t i c  potential anywhere external to the surface can 
11be found once the potential distributi on on thc-

surface is known. Thus, to determine the radiated In this section the ge neral three d imensiona l
sound f i e l d  tIre problem reduces to the d e t e r m i n a —  i n t e g ra l  rc- p r u - s t - n t a t i o n  of the solutions of theL io n of the  d i s t r i b u t i o n  of the a c o u s ti c  p o t e n t i a l  I l c l m h o l t z  e q u a t i o n  is deve loped  for  ap p l i cat i o ’i  toon the two—dimens iona l  s u r f a c e  of the geometry Un- 

radiation probl em— . This particular formulationd i r consideration instead of solving the He lm h o lt z  y i e l d s  un ique  so lu ti ons  at  a l l  f r equenc ie s  and does
equation in the surrounding infinite three d imen— 

riot have strong singularities which are difficultsuon a l domain, 
Co handl e nume rically . The general integral equa-
tion is then specialized for axisynsietric geolne—It has been previously shown~

- 5  that when J p -  t r i e s , A more d e t a i l e d  develo~xrr ent is given in R e f .pli ed to exterior sound radiation problems the sol .-
t u t u  technique fails to produce unique solutions at
f r e q a -n i  i l -s  c o r r e s p o n d i n g  to i n t e r i o r  e i g e n v o l u i - s  G en e r a l  Theory
s t  tI re - c - , s , t - t r i e - . under  c o n s i d e r a ti o n . U n l e s s  s p e —

I u ’ u-~ . . u t l on s  a re taken , s t r a i g h t — f o r w a r d  f lume- r i — B e g i n n i n g  w i t h  the  three  d imensional  Re lm h o l t z
sol utions of the develope d integral equation at 

equation which governs the spatial dependence oflT- s l u u u - n c r e s  cl ose to the eigenva luies of the interna l 
the acoustic field for sinusoidal oscillation s

problem roduce large errors, A technique proposed
by B ur t  in ~nd Mi l l. r4 for avoiding this uniqueness 

72 ~ + k 2 
~ • (1

-rob ic- in and the associated numerical errors is used

‘ A - t s r  -; t -,nt R.-s’ r h  !-.ngine-L- r , Mu -nbe r Al - ~~ whe rc-~~ is the tout -tic potenti al and k is the wave
** i t . - ’  i r ih I- ;ng in e’ r , Member ALAA number. The standard i n t eg ra l  r e p r e s e n t a t i o n  of the

~~~~~ 0- v- n t is ’ P ro fe s sor , A s s o  t i e  F e l l o w , ALAA e x t e r i o r  so lu t ions  i s  found to “c ’ .6
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Ref . 1.

- aL(l’.Q) - ) ~~~~
-
~

- )dS = 4i- ~(P) The s o u n de s t  a ; s ; - r s u c h  f rom an dna  I - - i  i c- - I  so intG.~(Q) 
an

- (S(P ,Q 8n q u u f  v iew i s  g iv e n  b y b u r t o n  and M i l l  r who IIJ (q q ( 2 )Sq su ) - ) ’e s  t e d  the i s - c  of the differential forms I Eq.
5) which governs the spati al depend flee ol t h e

the tm- run represents an outward normal deriva- acoustic v el ocit s .tive with q respect to the bod y as shown in Fig.
1 ; th at is 

2 ~~~~~~~ = 

- 

-i(3 ) 

2
C~~I ,Q) 

- 
~~~~~~~ - ;i(l) dS

an — n  ~n - q(3 )  p 
S

r q q
q q

Als o, G ( P ,Q) is a fundamental three dimensiona l 
~~~~~~~ equation can alto be- solvu- d for ~~Q) onc e - t h e

si lis t io n of the h-ielmholtz equation and is take-n tO 
normal velocity or a d m i t t a n c e  i t  s ;see t i l e d  u t  the

be tire free- space Green ’s Function for a point 
surface. Howe-ver , this equation has t~ own set  of

soiurc e b defined as associated eigenvalues at which uniqu e so lutions
ikr(P ,Q) 

cannot be obtained . Burton and M i l l e r  -sug~ i -- -t taR-eG ( P ,Q) r(P ,Q) (4)  m u g  a linear combination of the- two e q u a t i o n —  to
obtain

From Eq. (3), if the acoustic potential and the 
-

normal acoustic vc-loc- ity ~~~ are known at each _______~G(P~Q) 
- C (P,Q)  -

~~~~~~~~

- ) dSJ ~ ~~~ ~fl
q 

q
q s

p o i n t  on the- s u r f a c e  of the bod y then the acoustic q
potential may be calculated anywhere in the exterior 

- 2G ( P ,Q) 
— ~C ( P ~ Q )  

~~~( s ~~ dSdom a in .  + ~ ~ J~~~
(~~ 

~n an an -n I qp q p ‘1STo solve for the surface potential , the point P q
is moved to the surface of the body. Equation (2)
then becomes = 2— ~~ (P )  + a 

~n / (8)
p

aG(P,Q) 
- G ( P ,Q) )dS = 2 — c~ (P )

.14 8n 8n q
q q 

(5) Since the two sets of associated interna l eic-en-
q values are mutually exclusive the linear combination

of equations shou ld yield unique solutions if the
if the surface of the bod y is sufficiently smooth, complex caup ling constant a is properly chosen, It
Introducing a modified admittance function defined is shown that -a must meet the following restrictions
as to guarantee that Eq. (8) yield unique solutions

~
1J

~ 
Tm (~~) � 0 k real or imaginary— afl

q 
(6)

Im (a) = 0 k complex

Eq. (5) can be written as 
A problem arises in the numerical solution of Eq.

- (8) as the third term on the right hand side- is
a G ( P . Q)

- ~ (Q) dS - I cp(Q )G(P ,Q)Y(Q)dS strongl y singular in its present form as the point
.1 anq q q1 Q approaches the point P on the surface of the body.S Sq1 Meyer , Bel l  and Z irrn5 have shown that this diffi-q

(7) 
culty can be overcome by the prope r interpretation
of this singular term. Employing a vector transfor-- - mation 7 and tak ing the Cau ch y Principle Value Eq.G(P ,Q) dS= 2 - -T CD(P) + 

• 8n q2 (8) is shown to be e q u i v a l e n t  to
q

Sq2
aG(P,Q)

- G ( P ,Q) ~ 2 .i’
~ dS

where = + j . ~ an an I q
4 .1 q qq q 1 q s2 q

If either the acoustic ve locity or the admittance is + a : ( ~ (Q) - ~ (P)) a
2G(P ,Q) as

an an q
known at  each po int  on the su r f ace  of the bod y then ~ q
the a c o u s t i c  p o t e n t i a l  may be c a l c u l a t e d  at  each q (10)
po in t  u s i n g  Eq. ( 7 ) .

- a up (P)  J (n ‘ n ) ( i k ) 2 G ( P ,Q) dS
p q qUnfortunately this equation does not yield

Unique- solutions when the wave number k is  an in- Sq
te rna l e igenvalue  of the  bod y under  c o n s i d e r a t i o n .
Since the-sc eigcnvalues are not known a pr io r i  for
g e n e r a l  b i rd ies  the  f o r m u l a t i o n  cannot be r e l i ed  

— 
- a G ( P ,Q) 

~~~~-~~~-~- dS • 2ru (cp(P)-4~ r~~~
S
~~~

”
anupon to give consistentl y good 

~eZu lt s . There  are ~ J an an q
many  papers in tire l i t e r a t u r e2 , • d e a l i n g  w i th  s q

qt h i s  p rob lem , The r e l a t i v e  m e r i t s  and shor tcomings
of th i - methods employed are discussed in detail in

2 -

- -
- “‘ -eaa.- •~~n - -  - —  --



A l l  ‘f the to runs in Eq. (10) s u r e  now regular and Kernel Prune t j o l t s

t i r e  c f i r s  i t  dire-i L v  m t  5~c b1e- ; however , all the -

S ) = 2 c-os m cib u t t  i t t ,!~ , ir e  u s c  j  l l a t i ’ r ~ and si u u t -c ilar so that care- K1 
(S

1~
, q 

~o 
;n

q q qmust b . t al - eat  in thu-jr nurse-r i  c -al ap h ir oxu s a t i on .

(lii)
Axisynuse-tr ic Formulation

S ) = 2 ,  
- 

~
2 C ( P ,Q) 

cos m -- d -
Wire-n dea l in g with a body of revolution as shown 

1
~2 ~~

p’ q .1 -~n ~n ~q ~qp q
in Pig . _l an ~ux i sour -se-  Li is f trmulatiorr of Ui- - prob—
cr1 is a is - i t t  t ~i : i - o i s  s ,~~ Tb i s  lie ing the- e use an i- l i-sic-nt Forcing Func t ions

of area ) t , s s S i u -  5 
—

S ) = 2-~ G ( P ,Q)(ik)
2

in . n ) d--dS = dS d- 
F
1 

(S
r
. q 

~o ~ 
q q

q
( 1 7 )

wit ,  r i  S i s  the d us t  u r i t  e- a t on i -  tin - ii rb - ic ii r of tire 
. ~ 2

C (I’ ,Q)su rfac e in th5- ~—z ‘ i i i ’  __________F2 
(S

1,,
S ) = ~~- d-
q 

~~~~~ 
an an q

p q
Assuming an as s o~t i ,  vi lot it- distribution of

Lire - form
Substituting Eqs . (15)—( l7) into Eq. (14) gives

v(S) cos iii 0 (12)
cn (a

~-(S ) 
{~~

S ,~
- ) + K (S S )~- dS

arid defini ng a s i t  - t i a l  function q p q 2 p’ q a q

c ( S )
c- os m ‘- (13)

(10) becomes 
- 5(S~ ) 

~o 
{F1~~~p~

S
q

) + F
2 

(S
p •
S
q
)~ dS

q

(18)

S ) + 1 (S S ) ~~ dS
- - aG(P.Q) -S cos m - T~ dS - 

~ 
V(S

q
) { t

l~
5
p’ q 2 p ’ q J qan q qq 0

S
q

- a - ( S  ) G (P ,Q)(i.c)2(n . n ) dS -

p ~ ,~ p q q = 2~ ‘(S ) + a v(S )
Sq

where -l is the length of the generating line of the
— ~ (S ) dG (~~~~ dS surface of revolution. The S-- coordinate directions+ a 

~ L~~~ q > c-os q 
~ 

] an an~ q have now been effectively uncoupled so that the
Sq problem has been reduced to the evaluation of line

integrals in the coordinate directions on the sur—

- - 
(14) face of the body. This formulation does not restrict

— 
-s 

v ( S
q

) G ( P ,Q) c-os rut ~ dS the forts or type of boundary conditions on the body;
q q it merel y assumes that the boundary conditions can

S
q be represen ted by a sum (expanded in a set) of tan-

gential modes.
- ~j  v ( S  ) aG(P.Q) 

c-os m 0 dS
q an q q 

111 . Resultsp __________S

- - Numer i cal  resu l ts h ave been ob ta ined for  a
= 2 r r - i ( S  ) + -s v(S  )j  sphere  and cy linder using the numerical technique

I., P p described in Ref. 9. Basically, this method con-
sists of first specif ying the -r-z coordinates and
the normal vector at each point on the surface,

In the above i-quation - :~~ha~ been assumed to be 
From these quantities the distances r and the nor-

ze ro so that c-os r~ P mal deri vatives can be obtained . The integral

~i n w , three  sets of functions are defined : 
in Eq. (18) is anq then separated into n inte-
grals taken over subinrtervals of length -Un. The

influence- Functions acoustic potential is assumed constant over each

-~~~ sub in terval  and the in tegra tions are per fo rmed  nu-

~1 
(S ,S ) = 2 G(P,Q) c-os m 9q 

dO
q 

merically using a four-point Gauss-Legendre quadra—
q .1~ Lure in the ¶ -Z  plane. A twenty-point Gauss- Le gen-

(15) dre q u a d r a t u r e  formula  is used in the c i rcumferen-
t i a l  d i r ec t i on .- a c P .Q) c-os m eq q 

Exact  r e su l t s  were obta ined us ing  separation of~2 
(S ,S ) = 2~,q 

~~ 
an

p
var iables,6 To el iminate the need for evaluating
the r e s u l t i n g  i n f i n i t e  se r ies , the norma l v e l o c i t y
and a d m i t t a n c e  d i s t r i b u t i o n s  were se lected so tha t
on ly  one term in the series remains .

-3
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Ti’ in ve st uu;ati tire c i  i t - s t of the  c - u u i p l  i n K  con— t h a t  more po in t s  need to be t aken  n c  h i gher f r e q u e n —
s l O i t  , in Eq. (18), the- sur fuce po tcrr tua l dis t ri— ci t -s wit h djsc-ontinuo uus boundary condit ions present .
b u t  io ns w i - r e  ob t a in t - d  f o r  0 , i , and i /k  f o r  

-

t w e n t y  p o c i r t s  on the  sh the- ri- , The- e x a c t  s o l u t i o n  At  h i g h e r  t a n g e n t i a l  mode- a , t he v s u r i a t  j o u r  in
i s s n u t u t e - d  t u t r  t h i s  case -  u s  the- c i r c u m f e r e n t  j a l  d l  r e c t  ion b e h av e s  -u s c- u - , r- -~

n t s r ~~’) wire - re m = 0 ,1 , 2 to  cheek the nut -e ri c- a l inte gra—

~~( P )  = 
C ti o n scheme in t ire c i r c u m f e r e n t i u l  d i r e c t i o n , the
r(P) (19) ‘-curf ace acoustic potential was computed for inn =

and m = 2. thu results are presented in Fig, 6 for

wit’ i c  r is the distance fits - i the- origin to a - t i n t  k = / with the- velocity specifi ed and the admittance

P ,-n tire surface , A— shown in Fig . 1 , with m z er o  e v e r y w h e r e  on tire- surfact- . The computed and

the com puted magnitude-s of tire- acoustic potential exact ri s tilts are in agreement to within two per

Cur.- in error by 12 per cent at wave- numbers close cent for b o t h  ni = I and in = 2 .
Lu the interna l e-i genfreq uenci us s of — , 2’- and I— .
f l i t - s e  resu I t s  ar - i -  t hosi  t h a t  wo cu ld  be o b t a in e d  frost i t  has been sirown 5 that once thur surface poten—

Eq.  ( s ) ,  The r e l a t i v e l y 1ar ~ e- e r r o r s  a re  c- xpe ’ c c u c l  L i i !  has bee-n a c c u r a t e l y c o m p u t e d , the f a r  f i e l d

1 m m  t he a n a l y s i s  of B u r t o n i anti I rom p r e v i o u s  i n —  S an he - dc- t i  r m i r r e d  t o  a t  l e a s t  the- a c c u r a cy  of the
V e s t i g at i o n s  e u s L i i g  Eq.  ( 5 ) , 2 , 5 B e u r t o n  prove-s  t h a t  su r f a c e  p o u i - l i t i a ! . t h i s  r e s u l t  is c o n f i r m e d  b y the
s i t t i ng the i m a g i n a r y  p a r t  of  -, n o n z e r o  g u a r a n t e e s  d a t a  p r e s e n t e d  in F ig .  7 for a cy linder with the

u n i q u e  so l u t i o n s  when Eq.  (18) is  used , A l t h o u g h Vi  lo c i t y  s p e c i f e e d  ever ) - sh ere  on the  s u r f a c e  a t

t he- maximum error is red euced fo r  - t i to l e s s  than  k ‘ 2 . The r u s ul t s  a t  20 rad i i  [rots the s u r f a c e  are

per ce- nt whi m -n the nond i m e n s i o n a l  f r e q u e n cy  k is in a r - em - m e-n t  w i t h  e x a c t  r e ’ .n l t s  to w i t h i n  one per

less  than seven , s ign i f i c a n t  e r r o r s  are s t i l l  c v i —  c en t  eve n thoug h t i re -  s ur f a c~ ‘-rot-s at sonic p o i n t s

dc-nt a t  the  h i g irc- r frequencies as shown in F ig .  is a bove twct per c e n t .  D a t a  ig . 8 show t h a t
ac- cu r a t e  r c s u i t s  a re -  ob t a i ne u  a t  d i s t a n c e s  g r eat e r

i n t h i s  s tud y c o n s i s t e u r t l v  good r e s u l t s  sire - ob— t han one i n t e g r a t i o n  s tc -p s i z e  f rom the s u r f a c e . At

t a m ed o n l y  when a = i/ k . li-u F ig .  3 , th e com pu te d c - l o s er d i s t a n c e - s  er r o r s  f r o m  the n u nu e r i c - a l  eva lu a -

and exact results with -a = i/k agree to three sig~ 
t i on  of the s i n g u l a r i t y  tn the Ureen ’s function de—

nificant figures, The reason for this behavior is fi ned by Eq. (4) Ic -id a to large err -curs .

cnu rre -ntl y under investi gation ; howeve r , for all the
cases pre sented hereafter this va lue of o is chosen 15 . Suaranary and conc lusions

and the exact surface distribution is given by Eq.
(19) when m = 0. An integral solution of the He lmholtz equation

is developed for use in rcoust fc radiation problems .

A problem of more pract ical importance is the- Un l ike previous formulations which give poor r~ sult s

finite axisynunetric duct since’ t h i s  s u r f a c s - app roxj -  at frequencies corresponding to eigenfrequencies of

u-iates an eng ine  c o n f i g u r a t i o n . The surface potential the surface under consideration , the formul. ition

d i s t r i b u t i o n s  are  presi -nted in Fig . 4 for a ze-ro used in this stud y is valid at all frequencies . The

adutettan ce everywhere on the surface. The velocity surface potentials computed numericall y for a sph ere

distribution is specified over the entire surface- and cylinder using 20 points along the perimeter

and the potential given by Eq. (19) has a magn i tude are accurate- to within ten per cent for no,rdimen-

independent of frequency and a irhase linearly pro- siona L frequ encies ka of from one to ten where k is

portional to the frequency, In Pt1;. 4 the magnit tud e- the wave numbe-r and a is the radius of the sphere

and phase are p lotted agaitust the distance- -r long or cy l inder. For discontinuous boundary conditions ,

the c rimeter S. The largest errors in tire magni~ 
the numerical arid e xact values are in agreement to

tude of the potential of about 10 percent occur on within 10 per ed it for ka < 1 . At higher frequencies

the ends of the cy linder and at the corners. The the results are as much as 40 per cent in error at

r u - s u i t s  a t  the ends can be improved wi thout  i nc-r e - a s -  the p o i n t  of d i s c o n t i n u i t y  w h i c h  s u g g e s t s  t a k i n g
i ng the numbe r of p o i n ts b y area w e i g h t i n g  r a t h e r  more po in t s  in e v a l u a t i n g  the i n t e g r a l  H e l mh o lt z
t h a n  b y taking equidistant points along tire pm-rime - equation to inc re-use- the accuracy when discontinu-

ter . Thu e-rrors a t  the co rne r s  are caused by the ous boundary conditions are speci f ied . At distances

discontinuous norma l derivative in going from the greater than the numertca l integration steptuize ,

cy linder to the end , The errors in the phase are the far field results are at least as accurate as

( - 5 5  t han  four  per c e n t  in a l l  cases ,  The e r ro r s  in the corresponding su r f ace  p o t e n t i a l  solutions .

magnitude increase with increasing frequency, but
even ri-h e- n k 10 the n u m e r i c a l  r e s u l t s  are w i t h i n  R e f e r e n c e s

10 xc vent of the exact s,,l uitions.
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Predicting the Acoustics of Arbitrarily Shaped Bodies
Using an Integral Approach

William A. Bell, William L. Meyer,t and Ben T. Zinnl
Georgia Institute of Technology, Atlanta, Ga.

An integral solution of the Helmolli equation is developed for predicting the acoustic properties of arbitrarils
shaped bodies. W ith the integral formulation. the acoustic potentials at the surface are solved independently of
the internal acoustic field which, effectively , reduces the dimensionality of the problem by one. Considerable
reductions in computation time and storage requirements are thus achieved. Efficient numerical techniques for
solving the resulting algebraic equations are presented. ~umerical results obtained for the Iwo.dimensional
problems of a circle and a rectangle agree to within one percent with available exact solutions. The modes of a
star-shaped configuration and a duct with a right-angle bend are also determined to demonstrate the ap.
plicahiliiy of this method to complicated geometries and general boundary conditions. The acoustic properties
of a sphere are investigated using an axisymmetric fonnulation. With the axisymmetric formulation the
numerical and exact results agree to three significant figures.

I. Introduc t ion the acoustic pressure and velocity can then be determined . To

T HE prediction of the acoustics of arbitrarily shaped obtain sufficient accuracy, fine grid sizes must be used which
bodies has a variety of applications in aerospace necessitates large computer storage requirements. This

engineering, Among them are the determination of the in- drawback was noted by Baumeister , Baumeister and Rice,~~
ternal and radiated sound fields from airbreathing propulsion and Aifredson who used this technique in studies of duct
systems and the investigation of the stability limits of rocket wave propagation. Because of the storage requirements this
combustors. These studies are concerned with obtaining technique has mainly been applied to two-dimensional
so lulions to the Helmholtz equation, which is derived from problems. For three-dimensional problems numerical
the wave equation when a sinusoidal time dependence is methods capable of handling large matrices must be used
assumed and which describes the spatial dependence of the which require considerable computer time and computational
oscillations , This equation is included in most standard texts effort. 4 This technique is also impractical in radiation
on differential equations of mathematical physics (Ref. I, Ch. problems which involve infinite domains.
II) and has been extensively studied in both differential and To avoid the limitations of the diffe rential formulation , the
integral form. The differential form is currently the most integral approach is employed in this study. The integral
w idely used. approach has been successfully applied to a wide range of

In differential form, solutions of the Helmhollz equation acoustic problems. In determining the sound radiation field
can be obtained by separation of variables , ’ This method I torn vibrating surfaces , integral techniques have been widely
involves series expansions of the solutions in terms of used. ‘~~ For example, Chen and Schweikert I~ 6 employed
eigenfunctions of the system. Although Ihis technique has this method to determine the radiation sound patterns for
been successfully applied to sever.2l pract ical problens in duct three-dimensional shapes with mixed boundary conditions .
wave propagat ion, it has the follo.r ing linitat ic.ns: I) the To check the accuracy of the results , they computed the
ser ies expansions often involve special functi ur n s which are radiated field produced by a piston vibrating on a sphere. For
difficult to compute; 2~ at high frequencies and at the ihis problem an exact solution exists and compares favorably
boundar ies Ihe series are slu aiv cons-ergeni--—thcrefore , a ss ith the numerical results. The integral formulation is also
large number of terms in the series must be retained to ensure used to solve the problem of scattering by arbitrary
accurate resu lts , w hich often requires excessive - computation shapes , 5-~ i Banaugh and ~loldsmith , for example , used this
t ime; 3) this method can only be used with special coordinate technique to investigate the effec l of surface shape °~ on
syslems and boundary conditions for which the separation of scattered sound fields. By applying this method to a circular
var iables can be applied. At present only eleven suttable cylinder , for which exact solutions are availahle ,’~ and
coor dinale systemsareknown(Ref , l,p. 5l3ff) . comparing the exact and numerical solutions , Banaugh and

For arbitrarily shaped bodies, the differential form of the Goldsmith demonstrated the accuracy of the integral solution
Helniholti equation can be solved by writing the equation in scheme, Although this method is capable of handling mixed
lerms of finite differences (Ref. I, p. 703ff) . Unlike boundary conditions , only surfaces with rigid boundaries
separat ion of variables , this technique is not limited to ducts were considered in Ref. 19. The effect of mixed boundary
w ith simple geometries. A typical application of finite dii- conditions was included in studies by Liu and Martenson~~ferences is given by W ynne and Plumblee 1° who solved for and Quinn~~ of the internal acoustic pattern of lined duct s
t he tra nss crse eigenvalues and eigenIunctions of an annular with arbitrary shapes. Comparison of the theoretical
duct with lined walls. This technique involves the predictions with experimental data showed generally good
simultaneous solution of the acoustic potential value at every agreement. Unpublished work by Zinn and Gaylord 4
point within the duct , Once the potential values are known, demonstrated the applicability of the integral formulation for

t he determination of the natural frequencies and modes for
t’resc i t rc -d  as l’a~cr ‘-n- 494 at the 3rd A IAA Acro-Acous iic-s two-dimensional shapes. In this study the accuracy of the

iu ntc rc- nee- , Palo Alto . Calif. . J ruis 20-2 3 , 1976; submitted Aug . 2, technique was determined by comparing the natural
[9 16 re-s tslo n received March [5 . 1977 , - - - -

tides catcgu ’rics Noisc ; Aeroaco ustics , t requencies and mode shapes with available exact soluttons
‘lns nruc ior Me-mber AIAA. for a two-dimensional cyltnder with rigid walls. The
I kescarn,In Associat e, agreement is to within four decimal places which is two-

~Kcgents Proicsso r. Associate Fellow AIAA. orders-of-magnitude more accurate than previous results 
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obtained by solving the differential Helmholtz equations The wave equation can also be written in terms ofp and u. but
using finite differences , i t u  In another study by Tat and it is more convenient to work with an acoustic potential
Shaw , the integral method was applied to a right triang le, function , from which both the acoustic pressure and particle
The resulting eigenfrequencies compared with exact solutions s-el ocity can readily be obtained.
to within 5~o and the maximum deviation between the Equation (5) is the wave equation for a general time
numerically computed and exact potential fields was less than dependence and can be written in integral form and solved by
I %. using retarded potentials. 2 1 .2S However , for most practical

To demonstrate the accuracy and the versatt i t ty of the problems a sinusoidal time dependence can be assumed which
integral solution technique, results are obtained for several simplifies the problem considerably. Assume
acoustic problems involving a variety of geometries. To
obtain a solution, the integral equation is first discretized to ‘4 ’(r , i)  =c8 ( r ) e t ”  (6)
form a system of algebraic equations which are then solved
for the acoustic potential at discrete points on the boundary. Substituting Eq. (6) into Eq. (5) gives the Helmholtz equation
From these values the rest of the sound field is obtained.
Methods for increasing the numerical accuracy by use of v 24~+k 2

~~~O (k = c ~,fc 0) (7)
Gaussian quadrature and other numerical integration
methods are presented and discussed . The first problem which can be solved by simpler methods not involving the use
considered is the numerical evaluation of the resonant of retarded potentials.
frequencies and natural modes of two-dimensional circular ,
rectangular , and star configurations. Exact and numerical Integral Formulation
values are compared for the circle and rectangle. The next To obtain an integral formulation of the Helmholtzproblem considered is a two-dimensional duct with a right-
angle bend with a sound source at one end and sound ab- equation, consider the problem shown in Fig. I. Applying

Green ’s theorem to the Helmholtz equation ZS .2S gives thesorption treatment at various locations along the duct. The following integral relationresults are compared with finite difference solutions. These
studies demonstrate the applicability of the integral for-

~ 3G(P,Q) _____mulation to complicated geometries and general boundary f~ ( Q) — G ( P ,Q) IdS Q =O (8)
conditions. The next problem considered is the two- afl ~ an çn
dimensional radiation problem of a piston set in a right
circular cylinder. Again, the exact and numerical acoustic where ~ is the acoustic potential function and G is the Green ’s
fields are computed and campared. Finally , a three- function defined by Eqs. (1-1-16) , which also satisf ies the
dimensional problem of determining the acoustic properties Helmholtz equation. The Green’s function is regular inside
of a sphere is considered . The internal field is obtained using :he surface except when P=Q. At this point G is singular. To
an axisymmetr ic formulation. remove this singularity from the integral given by Eq. (8),

point P is surrounded by a small sphere or circle a of radius -

II. Governing Equat ions 
The integral will now include a term over a which, on taking
the limit as s —0 , gives

The integral formulations of the wave equation for internal
and radiation acoustic problems are developed in lhis section 

3~~~(Q)  ~G(P Q) 
dS~ (9)for two and three dimensions. The boundary conditions ~ (P)  =C~~[ G ( P ,Q) 

~ 3flQgenerally encc.intered in practical problems are then
discussed. For clarity, only a brief account of the derivation
of the basic equations will be given in this section. For a more where C is i /4 for two dimensions and l/4i- for axisymmetr ic
detailed and rigorous development , Refs. 26 through 29 can and three-dimensional shapes.
be consulted. From Eq. (9) the value of the acoustic potential function at

Assume a frictionless , homogeneous gas , and let Put and ~ 
any point P within the surface can be determined from the

be the density and pressure of the fluid at rest. Representing boundary values of the potential and its normal derivative.
the acoustic pressure and particle velocity at a time ! by p and Thus , the entire wave pattern within the surface can be
u,Euler ’sequalion fortheco nservati onofmoment um gives constructed. For arbitrarily shaped surfaces for which

numerical techniques must be used to obtain a solution. Eq.
(9) requires much less computer storage than the differential

Pui~~~~ 
+ V p = O  ( I)3,

The continuity equation yields the relationship

+p0c 0 V - u s = O (2) CircI. or Sphere ot
111s f

where c~ is the speed of sound. By defining an acoustic ‘ P

potential function 4’ such that Integrois ovsr 5+
Q ~~d S_ ca ncst

(3~
Equation (I) provides the relation

3+
P Puu (4)

and Eq. (2) results in the classical wave equation

I t3~ ’P , Integration Botain~-r’y
V ‘P — 

~
2 j ,

~
, = (5) FIg. I IntegratIon surface for an interior point.
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formulation given by Eq. (7). Using Eq. (9) the value of the where ~ is the Dirac delta function. The Green’s functions
potential at each interior point can be obtained independently, are n .i7 .i 8

whereas the method of finite differences used to solve Eq. (7)
requires the simultaneous solution of ~ for every interior G ( P. Q) = H0 ( 1 )  ( kr) for two dimensions , (14)
point. The integral formulation avoids the large matrices
involved with finite differences. e

G(P,Q) —2 ——cos mOdO for axisymmetric bodies (15)If the salues of both ~ and ä~ /än are known at every point — 
0 r

on the boundary then the was c pattern can readily be
determined from Eq. (9). However , for most practical and
acoustic problems either 3~ /3n or an admittance condition G(P,Q) =e _ t l 7r for threedimensions (16)
relating .~t and ôt~/3n are given . Therefore , the values of the
acoustic potential at the boundary must first be determined , where r is the distance between points P and Q, and
The necessary relation is obtained by letting the point i H~’’ (kr) is the zeroth order Hankel function of the first kind.
approach the boundary at some point T to obtain the
following relation 25 Boundary- Conditions

The two most common boundary conditions in practical
acoustic problems are the Neumann and Robin conditions.

~t, 
( 1) = 2Cc n (G ( T, Q)

~~~~~~~2) — 4i ( Q) 
39~~’~~ I dsçn (10) The Neumann condition of interest in the present study isn9fl 0 I3CQ

(17)Eq. (10) is applicable to a smooth boundary, but has been
extended to include cusps and corners. nS .24 To obtain the where A is the velocity amplitude of a given sound source. Ininterior wave pattern , Eq. (10) is first solved for the boundary the absence of a sound source A =0; this condition means thatvalues of ~~ . These values are then substituted into Eq. (9) to the particle velocity is zero at the boundary which implies adetermine the acoustic potential at the interior points. Both perfectly reflecting, or rigid surface. For surfaces whichEqs. (9) and (10) involve singular integrands as Tapproaches absorb sound, such as lined duct walls: an admittance con-
Q although for smooth surfaces the integrals themselves are dition is usually specified, which leads to the Robin condition.regular. Defined as the radio of the normal component of the particle

For exterior problems, analogous expressions to Eqs. (9) velocity to the pressure perturbation, the admittance y can be
and (10) are obtained by taking the point P outside the surface written asr .4 The integration in Eq. (8) is then carried out over the y=poco(u~/p) (18)
boundary, around a circle or sphere of radius e with point P as
a center , and then around a circle or sphere of radius R, which Substituting for u,, and p from Eqs. (3) and (4) gives
is arbitrarily large. In this manner the integration includes the
entire external domain. However , by applying Sommerfeld ’s (34 /ô n) + ikyd’=O (19)
radiation condition, it can be shown that the integral about
the infinite sphere or circle approaches zero as R approaches Eq. (19) is the Robin condition. ~ For sound-absorbing
infinity. 4 Thus, the corresponding equations for the external materials or devices, the admittance can be either analytically
domain become determined 30°2 or measured using the impedance tube or a

related technique. ~~ The effects of a given material on the

~ (P) C
~ 

ô~~~ (Q)  8G(P Q) internal acoustic properties of a particular geometry can be= —  (G(P,Q) ----—— — n ~n( P
OflQ 

IdS0 (II)

Yand

a ldS0
(12)

It is important to note that Eqs. (II) and (12) involve in-
tegrations about the boundary of the body only. Thus, the
radiated field at any distance from the body can be obtained
once the surface acoustic potential is known. With finite
differences , the values of the potential at every point in a very 1112

large domain would have to be computed in order to obtain _____________________ ‘ ‘ ~~~ x
the radiated field. Also, an artificial boundary condition at a 

~~~~

- 4large distance from the surface must be assumed . These
factors make the application of finite differences to problems ,~~ ~~
of this type rather inefficient whereas the integral formulation
can readily be adopted to such situations.

Eqs. (9) through (12) are applicable to two-dimensional,
axisymmetric , and three-dimensional acoust ic problems. In Ithe two-dimens ional and axisymmetric cases , these equations
involve line integrals; and in the three-dimensional case, the
integrals are taken over a surface. Note that the dimen-
sionality of the problem is reduced by one—a valuable - I
simplification.

The Green’s functions satisfy the following inhomogeneous I I
‘aforms of the Helmholtz reduction with homogeneous ‘I I

boundary conditions ’ J
a
’1

V 2G+k 2G= ô( P—Q) (13)
Fig. 2 GeometrIc considerations for the general problem.

- - 
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determined by substituting the admittance of the material into ç ~ 
u [ Ô G(  T ½) - ] dSjEq. (19) and solving Eqs. (9) and (10) or (II) and (12) for the 4’m I+2C\ + gkymG(r , 5)

(_ .I _s , n_ t ~t an
acoustic potential. Thus, the analytical techniques used in this ‘

~

investigation is applicable to a vast number of duct acoustic -“ s ,,
~ ~ dGfr ,m) 

+ j k Yi Gfr ,m) J dS,problems. Since the admittance of a combustion process can +2C 
~,also be measured , ° this analysis can also be applied to related J

J �mlinear combustion instability problems, provided that the N

~~~
I 

A,,~ 
~equations are applied to regions where the Helmholtz = 2C G(T i m) d Sj (22)

equation holds and mean flow effects can be neglected. By - -

replacing the combustion process by an admittance condition, In both Eqs. (21) and (22) the values of 4, are assumed to bestudies of combustion instability have been conducted in constant over each of the N subintervals. The difference is the
liquid and solid propellant combustors. °~~‘ This research method by which the terms involving the Green’s function areallows the extension of these analyses to more general shapes. evaluated. In Eq. (21) an average value is computed over each

Substituting Eq. (19) into Eq. (10) gives for the internal of the subintervals based on r ,m. With Eq. (22) these terms are
field integrated numerically from r ,_ t t m  tO 1~,+ ~~ 

using Gaussian
quadrature 39

~° to obtain more accurate values. This type of
4, ( fl + 2C~ r ~~ ~2) + iky ( Q) G( T,Q) JdSQ formulation has been used before with trapezoidal instead of3~10 Gaussian quadrature formulas. ’ In the present study for

= — 2C~ r4 ( Q) G ( T , Q) dS 0 (20) 
two-dimensional and axisymmetric problems, a reduction in
error of two orders of magnitude in the numerical results for a
nonzero admittance was achieved using Eq. (22) instead of

A similar expression is obtained from Eq. (12) for the exterior Eq. (2l) .~”
problem. For surfaces with spatially varying admittances, the
admittance is a function of Q. For most cases considered in 

~urfsce Geomet ry and Boundary Conditions
this study, y is assumed constant although nonuniform ad- The flr~! step in solving Eq. (22) is the determination of themittance distributions can be easily handled. coefficient3 of 0, and ~~

,,, - These coefficients depend upon the
surface geometry through the terms 8/ 8n ,, Tim’ and AS,. ByH I. Solution Technique specifying the admittance y and/or the sound velocity am-

In the last section, the integral equations were developed plitude A over every subinterval j ,  the effect of the boundary
which describe the interior and exterior acoustic fields or a conditions are included in the evaluation of the coefficients.
surface with arbitrary shape and mixed boundary conditions. To solve for the terms involving the surface geometry, the
The numerical solution technique for solving these equations first expression inside the integrals of Eq. (22) is written as
to obtain the internal or radiated acoustic patterns is
presented in this section and can be divided into four parts. 3 G(r)  

= 
3G( r )  ar

The first is the discretization of the integral equations into a 
~~~~ ~~~ an

corresponding system of linear , and algebraic equations in ~ Th expressions for ôGi8r are obtained by differentiating Eqs.suitable for solution on a computer. The second part is the (14) through (16). Substituting this expression into Eq. (22)specification of the geometry and boundary conditions. The
third is the computation of the coefficients of the system of
equations and the final part is the methods used to solve for Table I ligenirequencies and natural modes of a circle
the surface potential from the algebraic equations. 

______ 

fo r various admittance salues 
—

~~~

ADMuT lANCE VA LUE
h~ 0E ,.o ° 03  , • Q 31 °I) isc reti zsl ion o f the Integral F.qu ations

In t w o  dimensions and for axisymmetric problems , Eq. (20) ( ‘\~COMPUTEO T 84122 1 e324+O44Z~ 4441-0 0011

in.olves ~ one-dimensional improper integral about the ~5~~}~~ AC’T is~t ’e le~aa+o4~~ 44384

boundary line. For this type of problem several numerical ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
integration techniques ~ are available. The simplest is the (T )IEXACT 308424 30? 64O 54’~~ 2 5427

trapezoidal rule which has been shown to yield excellent 
~~~~~ ~~~~~~~~~~~ No’ Compot.dl Not ComPoted

results in two-dimensional studies with this type of in- (.~~~3EXAC1 383414 38I88oO309~ 3 55i0
tegral. ‘~~

-
~~~~

‘ Using this numerical integration scheme, Eq. ~i~=-s~ 
-
~

— —---—
~
-- 

42538 0(20) becomes 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

&~ + 2C~~ ~ ~~~~~ + Iky u G ( r u . , u) ]  AS , 
(-6:---

~:~\ COMPUTED 531783 No? Conput.d Not Comp u,t ,d

EXAC T 531755 ~ 3953 071011 1 45767
~ ___________-

~

= — 2 C~~ -l ,G(r ,,~ )~~S, (21) TabIe 2 Resonani Frequenciesand natural modesota
rectang le for different admittance valursal the ends

~ here one equation for 4, is obtained for each value of m and uoo~ 
- 

Ai34IT TAP4CE VALUE
________ ~~ 0 y * O 3  y .O3l

m is varied from I to N. Eq. (21) was initially used in this —
— 3 1432 380 +061994 2558400021investi gation to generate the N equations for 4, and accurate 3 4 6  3442 +0619C 2559

results were obtained when the admittance y was zero
everywhere on the boundary 4° which is the case considered in ~~~~~~~~~~~~~~~ 6281? 6.3024094881 8.e1640002t

previous studies. I9 ,24 2% However , when a nonzero admittance ExACT 62832 6 21340619< 58~~

IS ~scumed, this technique gives inaccurate results because of 
~~~~~~ O~~ JT~~ 7 0312 746 405111 6 333 ’ o oos

thr contribution from the Green’s function when the point j  L_J_ _i SAC? - i 0248 Not Cooaut.d 8 283
appr aches m. Because of the singular nature of the Green’s 

~~~~~~~ ~~~~~~~~ ~~~~~tur.c~ion at the point m, care musi be taken when numerically
integraling this function over the subinterval m. To increase ~~~~~~~~~~ ~~~~~~~~~~~~~ ‘!~ - 

Not Co,npotsd 8299

~~~U 94 ~~9 9456+01108 $ 1414000?the accu~ acy in evaluating the integrand, Eq. (20) is broken up UiJi1~i xacr 9 4~4S 9 425+OISC 11621icstoNintegralcgiven by Eq.(Z2). —- _______________

— ~~~~~~~~~~~~~~~~~~~~~~~~~ -
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gives a relation which involves ar/an ,, ‘Jm and dS. The cx- Computation of the Coefficients of the Discre mized Integra l Equation
pressions for ar/an ,, r,m and dS can be written in parametric Once the geometry has been specified, the coefficient of 4,

form for bodies with simple shapes, and this type of in Eq. (22) can be determined by evaluating the Green’s
representation has been used in previous studies using simple functions G(T j m )  and ôG (r j m)  /a r ,m. There are two problems
geometries. 1920 ,24,41 .42 By taking advantage of symmetry, in determining these functions: the first is a rapid, accurate
considerable savings in computer storage and computation method for computing them over a wide range of the
times were achieved. In fact , Greenspan and Werner 42 argument kr ,m; and the second is the singularity associated
showed that for a circle, Eq. (22) can be reduced to a single with each function as ‘~,m approaches zero.
equation instead of a system of equations which could readily For the two-dimensional problems to compute the Hankel
be solved to obtain the acoustic field. In the study by Tai and functions two routines have been used in this study. The first
Shaw,25 the method of images (Ref. 1, Ch. II) was used to consists of a series expansion using standard formulas for the
greatly reduce the numer of points necessary to compute Hankel function with complex arguments. ~‘-~~ A sufficient
eigenfrequencies and emgenmodes of a family of triangles, number of terms is taken to satisfy a specified degree of
Although these studies demonstrate valuable simplifications accuracy. To minimize time, a different series expansion
which can be made in applying the integral formulation to a which was developed by Hitchcock 44 is used for determining
particular problem, the techniques used are not applicable to these functions in the studies of the rectangle, star , and duct
more general problems involving complicated geometries and with a right-angle bend. With his formulation, accuracies of
nonuniform boundary conditions. 10 - 0 or greater are achieved using nine terms or less in the

In the present study for two dimensions, the expressions for series expansion. Reductions of up to 50% in computer times
the geometric variables are written in parametric form only can be achieved with this formulation.
for the circle. In the rest of the configurations considered, a For the axisymmetric problem, the integral in Eq. (IS) is
general formulation is used . The fact that a parametric carried out using a 20-point Gauss-Legendre quadrature
representation cannot be used in general cases is not a serious formula. For three-dimensional problems, evaluation of the
drawback —in fact , it somewhat simplifies the formulation - Green’s function given by Eq. (16) is straightforward.
Consider the general two-dimensional problem depicted in The major problem in accurately computing the coef-
Fig. 2. By specifying the x and y coordinates at the midpoint ficients in Eq. (22) is the singularity associated with the
of each of the subintervals , the distance T)m is readily corn- Green’s functions as rim approaches zero; that is, as the point
puted from theexpression j  approaches m in Fig. 2. The two-dimensional and

axisymmetric Green ’s functions have logarithmicr,m~~~J(X , X~
T2

~f (Yj~~Yrn)’ (23) singularities. In this study, the inaccuracies involved are
The expression for ôr/ ön, can then be obtained since ~t 

minimized by subdividing the intervals as indicated by Eq.
represents the dot product of the gradient of r and the normal (22).
atj. Thus, Determination of(he Acoustic Potential

— 
(x, — Xm) ~~~ + (Y, — Yrn) fl y, (24) Once the coefficients of the surface potential at each

13M, 
— 

Tim 
discrete point on the surface are determined, the equations are
solved for 4, using a complex Gauss-Jordan reduction scheme.

where n,, is the component of the normal vector j  in the X The interior or exterior points can then be found using the
direction (or the cosine of the angle between the normal vector discretized form of Eq. (9).
and the x-axis) and n0 is the corresponding y component (the To determine the eigenfrequencies of a particular geometry ,
sine of the angle between the normal vector and the y-axis). the technique described in Ref. 40 is used. Essentially, this
Analagous expressions for r,m and ar/ an, can be obtained for technique consists of: 1) determining the frequency k for
axisymmetric ~ ‘ ~ and three-dimensional problems. For two- which the determinant of the coefficients in the homogeneous
dimensional and axisymmetric problems, the line segment form of Eq. (22) is zero, 2) normalizing the equation at the
length AS, is simply eigenfrequency to obtain the surface distribution of the mode,

AS, = ~~~~~~~~~~~~~~~~ ~~~~ 
z and 3) using Eq. (9) in discretized form to find the interior

sound field.
or , for N equally spaced subintervals , Si = 1./N where L is the V . Resultslength of the perimeter of the surface. For three-dimensional
bodies, AS, is the area of each of the subsurfaces taken over Using the numerical techniques described in the last section,
the boundary. solutions have been obtained for a variety of two-dimensional

and axisymmetric problems to demonstrate its broad range of

MOOS MOOS

7 secon d mode, 8=0 
- - -

0 

~~~~~~~~~ Table 3 Surface poten t ials for a circle of unit radiu s .

4 Angle Numerical Esa .-I
12 .913() .9135

.4400*1. POINT 24 .668 1 ,669t
36 .3077 .3tM)
48 - .1059 - - I04~

8 60 5012 5(88)

~

‘ iix:i~~ 
72 - 8099
84 .9785 - 978)
96 . 9779 -

— NODAL LINE lOK - 8082 .81*)
120 - .4988 - 50181
132 - .1013 - .101*5
144 .3104 .3090
I 5(u .6702 .*56~)t
168 .9141 91?’
180 l .0000 (.0188)

f’ig . 3 r&d.I points and lines fo r the f irst nine modes of the stIr. - - -

- - - -~~~~~~~~~~~~r~~~ -~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
—-— -—.- - .-- — _____________
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Table 4 Surface potential for a rectangle, height to width 1(0 —
ratIo =0.5, fIrst mode, rigid walls 0 Tnk.n t r am Ref (3 

- - -  — -— - - ——-  - — SPL ,db 0 
Y Numerical~~~~~~~~~~~~~~~~~ i

- - - - _ .... _______......... . .. .

~~~~~

.. - int .grOi R.s u lts

I 2 2/14 1 .0060 1 .0063
1/2 1/14 1.006 1 1.0063 ~)0 — ~~

__
~9..L ~~~~~~~~ ~~~

I 2 3/14 1.0055 t.0063 o
3 -2 8  1/4 1.0000 1 .0000

5.4 1 

- - --11,28 1/4 .950t .9499 90
9/28 1/4 .8524 .852 1
7 - 2 8  ‘4 .7 119 .7116 I

So,.rd 
~5/28 1/4 .5356 .5354 0 

sme -ce
3/28 1/4 .3325 .3324 

Dlstonce Atosg Psrtn*t94i met94-s
1/28 1/4 .1127 .1127

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - 
--~==~ Fig. S Comparison of numer ical results b r a  duct with a right -angle

bend using the integral and finite difference approaches , Case I -

app lications. The two-dimensional form of the integral
equation has been used to compute the -csonant frequencies I I ’
and natural modes of a circle, rectangle, and star con- 0 Taken from Ref 13 

Ifiguration. In addition, the problem of a duct with a right ~~ L . db

ang le bend is considered, and results using Eq. (22) are — b n t ~~~0( Results
I00compared with finite difference solutions. The two-

dimensional problem of sound radiation from a right circular o [  ~~~~~~~~~~ ~
‘

cylinder is then considered and the numerical and exact 
~ _________solutions are compared. Finally the acoustic properties of a 

~~~~ 

~~~~~~__ -
~~~~~~~~~~~~~~~~ ________ ________

sphere are computed using the axisymmetric formualtion.
For a circle and rectangle, comparisons between exact and 

0 ~~ I I I
Sourcenumerical solutions are presented in Tables I and 2. In these

tables the numerical and exact eigenfrequencies are tabulated Diatonce Along PerImeter, meter;
for three admittance values, y=0, y =0.3, y 0.3i, with thirty Fig. 6 Comparison of numerical results for a duct with a right-angle
points taken on the boundary . The best agreement between bendusingmheintegraland finite differenceapproaches,Case2.
the computed and exact results occurs at the zero admittance
condition. For the circle, the real part of the eigenfrequencies
compare to five significant figures and the imaginary parts are the accuracy of the computed eigenfrequencies for a nonzero
accurate to 0.001 for the first five modes. When a nonzero admittance condition by an order of magnitude.
admittance condition is introduced, the accuracy is reduced to For the circle the accuracy of the computed natural mode
three significant figures in the real part and to 0.01 in the shapes is shown in Table 3. The agreement between the exact
imaginary part of the eigenfrequencies. and computed eigenmodes for a rigid boundary is to within

As with the circle , the agreement between the exact and 0.01% for interior points sufficiently far removed from the
numermcal values for the rectangle is good for a rigid bound- boundary. For a nonzero admittance at the surface, the ac-
ary but deteriorates when a nonzero admittance is in- curacy is to within 2%. These results are obtained using the
troduced. From Table 2 the agreement is to almost four interior analog of Eq. (21) which explains the deterioration in
significant figures in the real part of the eigenfrequency and to accuracy of the interior points as the boundary is approached.
within 0.01 in the imaginary part for a rigid wall. The Equation (22) is used in the studies of the rectangle, star , and
Gaussian integration techniques developed in Sec. III improve duct problems and more accurate results are obtained close to

the boundary. For the rectangle, the boundary values of the
acoust ic potential are presented in Table 4. The agreement

Case I~ y 0  between the exact and numerical results is within one-half of a

/ 

percent. Computation times range from ten sec per eigen-Sc.a~ Source \~~Cos.2 y.l
4 ) . — frequency for the circle to 45 sec for the rectangle on

UNIVAC 1108 computer. Using the discretized form of Eq.

1, ( 
,

~,, 

(9), interior points require approximately two sec per point to
compute.

In studying the star-shaped boundary, which is of interest
________________________________ 

in solid-rocket combustion instability problems, the ap-

-— geometry for which separation of variables does not apply can
/ 

~~~~ d f~ 

plicability of the integral solution technique to a complicated

be assessed. The first nine eigenfrequencies and natural modes
/ Fl~h• ~~~~~~~~~ 

— for the star are presented in Fig. 3 for a rigid wall with 48

Ly Poirris 

points taken on the surface. The most unique feature of the
— — — acoustic field for the star is the appearance of nodal points at

some of the resonant modes. In the circle and rectangle nodal
— — lines only are present , and they follow one of the separable

‘
~~ ~~~~~~ ~~~~~~~~~~ — 

coordinates of the boundary. With the star both nodal lines
and points can occur which is in qualitative agreement with

— — 
experimental observations for unstable solid propellant
combustors. Computation times are from 60 to 75 sec per

— — mode. The modes of a typical solid propellant configuration
during a burn have also been computed and are given in Ref

“4” n1~~ — 45.
I The last internal two-dimensional problem investigated is

Fig. 4 LocatIons of the dIscrete points, nonzero admittance that of a duct with a right-angle bend shown in Fig. 4. The
boundaries , and the sound source for the duct with a right-angle bend, reasons for studying this confi~~ration are: 1)10 invest~ ate a

—- - - .
—- . —~~~————.~~ -
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currently being develop ed to chec k these results and should
clarify the discrepancy between these two methods.

For two-dimensional radiation problems, excellent results
are obtained as shown in Fig. 7. Here the radiated field from a
piston set in a right circular cylinder is computed and com-

0. 005 pared with exact results from Ref. 3. The mean square error is
less than 2¾ while the computation time required is 15 sec to
obtain both the surface and far field patterns.

\\ To check the accuracy of the axisymmetric formulation, the
first two resonant frequencies and natural rnec~c shapes of a

‘
~ sphere were computed and are presented in lable 5. As with

the two-dimensional problems, agreement between the exact- 

~~~~~~~~~~~~~~~~~~~ O.0O6 0.0)0 
~~~~ and numerical calculations is excellent. Computation time s

_______ 
are approximately two minutes per mode; however , no at-

36 I~~~ 
tempt was made to take advantage of the symmetry of the

12 POINTS problem which can reduce the computation time by at least a
factor of two.

5 . 3

‘%s
~’

Conclusions and Recommenda tions
sajeo PA 1TI~~ AT 2055

— - 
The results for the circle and rectangle show that th e in-

tegral technique is very accurate in determining resonant
frequencies and natural mode shapes. Its application to the
star configuration demonstra tes its usefulness in studyin g the

h g.  7 Sound pattern produced by a 20~ vibrating piston set in a acoustics of complicated shapes. For the duct with a right-
~-ireularcsIi nder. angle bend , the integral approach is sho wn to be applicable to

nonuniform boundary conditions involving sound sources.
The formulation also gives accurate results for two-

nonuni form surface admittance, 2) to include a sound source dimensional radiation problems shown in the study of the
in the integral formulation, and 3) compare the results ob- right circular cylinder.
tam ed by the integral technique with the finite difference With the axisymmetric formulation accurate results are
solutions of Ref. 13. obtained for the internal eigenmodes of a sphere. Extensions

The results obtained using this configuration are prese nted to more complicated boundaries can readily be made.
in Figs. 5 and 6 and are compared with the solutions obtained
uisng the finite difference method . Although the results using Acknowledgmentthe integral approach are in qualitative agreement with the
finite difference solution , quantitative agreement is lacking. Most of this work was conducted under NSF Research
The same number of boundary points are taken in both cases. Initiation Grant GK-42l59.
Doubling the number of subintervals using Eq. (22) does not
improve the agreement between the two sets of data. Refe rences
However , it does show that the results of the integral for-
mulatmon are self-consistent. An experimental setup is ‘ Morse , P .M.  and Feshback , H., Methods of Theoretical Physics ,

Parts la nd!!, McGraw-Hill , New York , 1953.
2 Weinberger, H. F., A Fir-cl Course in Partial D~fferentiaI

1 able S Resonant frequenci e s and surface potentials for a sphere Equations , Blaisdell , Waltham . Mass., 1965.
of unit radius , first and second modes, axisymmetr ic formulation 

8 Morse, P. M. and lngard. K. U., Ch. 9, Theoretical Acoust ics,  
McGraw-Hill , New York , 1969.

Resonant trequencies 
- 4 Skudrzyk , E., The Foundations of Acoustics, Springer-Verlag,

Comptned Exact
- - - - - -  Vienna , Austria , 197l ,Ch . 22 and 23.

2.(844-0. (X)4 1 
— 

2.082 
-.  t Mitchell , C. E., Espander , W. R., and Baer , M. R., “Deter-

) .346-O .007i 3.342 mina mion of Decay Coefficients for Combu s iors with Acoustic Ab-
— sorber s ,” NASA CR 120836, Jan. 1972.Norma lized surface potent ial 6Oberg, C. L., “ Improved Design Techniques for Acoustic

-\ng le Computed Exact Liners , ” Rocketdyne, Canoga Park . Calif., Report No. RR-68-5 ,
l - i i ~ mod e) 

- May 1968.T Oberg, C. 1., Wang, T. 1., and Schmeltzer , R. A.. “Analysis of
IS 96960 .96962 the Acoustic Behavior of the Baffled Combustion Chambers ,” NASA

25 .909’s ~~~~ 
CR 72625 , Jan. 1970.

.82232 .822 28 
8 Doak , P. F., “ Excitation , Transmission and Radiation of Sound

45 .7(1992 .7098 I from Source Distributions in Hard-Walled Ducts of Finite Lengt h (I):
55 57593 57577 The Effects of Duct Cross-Section Geometry and Source Distribut ion
65 .42439 .42423 Space-Time Pattern , (II): The Effect of Duct Length,” Journal of
75 .2599 2 .2598 1 Sound and Vibratio n. Vol . 3 1 , Jan. 1973 , pp. 1.72 , and Feb. 1973 , pp.
85 .08753 .08749 137-174.9Lansing. D. L. and Zorumski , W. E., “Effects of Wall Ad-

(~~ecofld nlude) mitianc e Changes on Duct Transmi ssion and Radiation of Sound, ”
1 .(888 I .018X Journal of Sound and Vibration , Vol. 27 , Jan . 1973 , pp. 85-100 .

I S  9098 9099 ‘°W ynne , G. A. and Plumb lee , H. E., “ Calculation of Eigenva lues
25 .740 3 .7405 of the Finite Difference Equations Describing Sound Propagation in a

.512 1 .5124 Duct Carrying Shear Flow ,” presented at the 7916 Meeting of the
45 .2275 .2529 ,4coustical Society ofAmer ica, Atlantic City, N.J., April 21, 1970.
55 — .0072 - - .0066 Baumeis er . K. J . ,  “Applicat ion of Finite Difference Techniques
65 .2346 - .2348 to Noise Propagation in Jet Engines ,” NASA TMX-6862 l , Nov.
75 - .4051 — .404 1 1973.
85 - .4953 .4942 ‘2 Baumemsmer , K. J . and Rice, E. 3. , “A Difference Theory for

- - - - ~~~~- - - - - - ~~~- - - - -  Noise Propagation in an Acousticelly Lined Duct with Mean Flow ,”
N umerKa( resuti s ob mained usun f Eq. (2 I) insic a d of Eq. t22 f . AIAA Progress in As tronautics and Aeronautics: Aeroacomsst,cs: Jet



82t) BELL, MEYER , AND ZINN A IAA JOURNAL

arni ( iiilciisiicc,i \~ is,’, ‘, ~,l 37 , Edito r: llcn rv I - Nagarnaisu; 25Burt o,t. A. J ., ‘ ‘ The Solution of Hclmholmi ’s Equal ion in Es-
-\ssocl~Ite I di t o rs :  lack V . () ‘Kecle and Ira R. Sch~ ari,. MIT Press , te nor Dontains Using Integral Equations. , ’’ NPI. Report NA( 30.
i...iiiihiidge. \1.i.,-, . 1975 . pp. 435 -453. Naimonal Physical Laboratory . Teddmngton, Middleses . Jan. 1973.

\ lt iedson . R i .. “ \  Note on the Use of the Finite Difference ‘°Stru t i . J. W . (Lord Ra~leigh), Ch. 16. The Theor of Sound.
\ t c~hod (or Predicting Steady State Sound Fields ,’’ Acu.stica , Vol. 28 . Vol. II, Dover Publications , New York . 1945.
\I.i’ l9~3 . 296.30!. U lngard, K. U., “On the Theory and Design of Acoustic

‘‘ ( antin . (i.. “Three-Di mensional Finite Element Studies , Part Resonators ,” Journal of the Aco ustical Society of Amer ica . Vol. 25 ,
One: Set vice Routines ,’’ Nasal l’ostgradua e School , Monterey. Nov . 1953 . pp. 1037-1061 .
( ,iIit .. Nt”~.59C 172 l 2 l . .\ , Dec. 1972. 3 Crocco , L. and Sirignano, W . A., “Behasior of Supercnit ical

‘ 1 ( licn . I.. I-I . and Schweikeri , D. (i ., “Sound Radiation from an Nozzles under Three-Dimensional Oscillatory Conditions ,”
Ar hit rars Body ,” Journal of the ,lcoustical Society of America , Vol. AGARDograph 117 , Butterworth Publications , London, 1967 .
35 , Oct . 196 3 , pp. 1626-1632. 33 Scott , R. A., “An Apparatus for Accurate Measurement of the

I .  H.. “A Matrix Method ot Analy sis of Structure-Fluid Acoustic Impedance of Sound Absorbing Materials,” Proceedings of
lnteraciioit Problems .” ASME Paper 61-WA .220. Aug. 1961. the Physical Society , Vol . 58 . 1946, p. 253.

‘ (h ertock . ( . ,  ‘‘Sound from Vi brating Surfaces ,’’ Journal of (lie i4 Z i ~~ B T., Hell , W . \ , and Daniel , 13 R.. ‘‘Esperimenta l
- lcoiot,ca/ Soc ietr of .4mer,ca , Vol . 36, .)itly 1964 . pp. l 30 5 l 3 1 3 .  Determination or rhree-Dinicnsional t.iquid Noztlc Adm ittances .’’‘
~(

‘op lcv , I - G.. ‘‘Integral Equation Mcihod tot Radiation from 
~l/,.l.4 j ournal , Vol. II. March 1973 , pp. 267 .272

\ ihtatirt g Bodies.” .!ourna/ of the .4coustical Societ .t’ of America . 3
~T-Burn er Manual , Chemical Propulsion Information Agency,Vol . 42, April 1967. pp. 807-816. CPIA Publication No. 191 , Nov . 1969.Banaug h. R . P. and Gold smith , W., “Diffraci,on of Steady 36Crocco , L. and Cheng, S. I., “Theory of Combustion InstabilityAcousti c W as es by Sur faces of Arbi trary Shape ,” Journal of the in Liquid Propellant Rocket Motors ,” AGARDograph 8 , But-.4i ius( ,c ’a/ .So, -

~ ’ty  of .-lmerica , Vol. 35 , Oct. 1963 , pp. 1 590 1601. ierworth Publications, London , 1956 .Mitzner , K. NI., “Numerical Solution for Transient Scaitering 3’ Culick , F. F. C . “Review of Calculations for Unsteady Burning
n a Hard Surface of Arbttrary Shape-Retarded Potential of a Solid Propellant ,” AIA A Journa l , Vol. 6, Dec. 1968 , pp. 2241-

rechiiique .” Journal of the Acoustical Society of A m erica , Vol. 42, 2255.
eb. 967 , pp. 391.397 . 

~ Conte, S. D., Chs. 2 and 5 , Elementary Numerical Analysis ,_ i Shav ,. R. I’., “Scatter ing of Plane Acoustic Pulses by an Infinite McGraw-Hill , St. Louis, 1965.
Plane with a General First-Order Boundary Condition,” Journal of 

~
9Abramowitz , M. and Siegun , I. A ., Handbook of Mathematical.-t j p lir-d .’ifrchanic.c , Sept. 1967 . pp. 770-772 . Functions , NBS AMS No. 55 , May 1968.: QLiiilt i D. ‘,V ., “Au Integral Equation Method for 1)uct 40Bell , W. A ., “Resonant Frequencies and Natural Modes of

\c cus t i cs  with Var y ing Cross Sections and Axiall y Varying li’t- Arbitrarily Shaped Ducts ,” Final Report , NSF Research Ini t ia t ionpedancc. ’ .11.1.-I Journal . “. ol. IS , Feb. 1977 , pp. 278-28 1. Grant GK-42 l59 , Georgia Tech., Atlanta , Ga., April 1, 1976.iii. I t.  K. and Martcn’ .on, A. J. ,  “Opiintutn Linitig Coil- 4h iones , D. S., “Integral Equations for the Exterior Acoustic
ti eiir ,il i i ,ns , ’ !/u.so -l ~-wdrnanij c \o ise Researc/ t , NASA SP-2t31 , Problem ,” Quarter?s’ Journal of Mechanics & Applied Mathematics,Ju ly l%9 . pp. 425.434. Vol. 27, Jan. I974, pp. 129-142.

‘/ inti, B I aitd Ga~~’rd. C. ( ..  Unpublished Notes and ‘‘An a: (. reenspan D. and Werner , P.. ‘ ‘ ‘s Numerical Method tor theA iual si i va l In’.esii gat i on ot ‘\cousiic Modes of Two and Three Exterior Dirich lct Problem or the Reduced ~\ ase Equation ,’’ .‘lr-I)uiiicnsioii,il soIid Rockci Motors a fhesis Proposal by C. Ci.
i / t h e /or Rational M, ’eltwties- ai:rI .1 nalv.ci.s . Vol . 23 , No. 4 , 1966 . pp.

~~~ lord , ‘~cliool it -\ I . , Georgia Tech - . At lati i a, Cia. 288-3 16.2’ ai . C, C and Stta~ , R. P., “Eigenvalues and Eigenmodes for 45 Gradshieyn , I. S. and Ryzhik , I. M., Table of integrals, Series.the Homogeneous Ilclmholiz Equation for Arbitrary Domains. , ” and Products , Sixth Prinhing, Academic Press , New York , 1972, 951Report ‘so 90, Dept. of F. S ., State University of N.Y. at Buffalo .
~~~~ Err 44 Hitchcock , A. J. M., “Polynomial Approximations to Bessel

‘ 1’Kell ige . 0. 1) ., (It . V I , loundations of Potential Theory , Dover Functions of Order Zero and One and to Related Functions.” Math
l’iihli~ai iot is . Ness York , 1953. Tal,les & Other,4idsto Com putations , Vol. Il , 1957 , pp. 86-88.

2 ’
~\ ebs ier A . G., (‘h. V I I I . The Dynamics of Particles , Dover 4

~BelI , W . A., Meyer , W . L.. and Zinn, B. 1., “Prediction of the
I’uhli~~u t i t c i t s , Ness ~ork , 1959. Acoustics of Solid Propellant Rocket Combustors by Integral

2’ t3aker . Ii. H. and (‘ops(~ E. T.. Ch. I, The Mathematical Theory Techniques ,” Proceedings of the 12th JANNAF Meeting, CPIA
of Flui ~ t’ns ‘ I’rincip le, o xford at the (‘larendon Press , 1950. Publications No. 273 , Vol. Il, 1975 , pp. 19-33.

..~flJ*S’~ —— — . — —.. - - - “t-,’,-’ ~~~~~~~~~~~~~~~ ._.. ‘ “
-—



SE Lt . iR i ly C  ‘ F t C A T U ) N ’ . F T S I i A ( . i (iI ,’n i i . . l ’ l r ’, ’r”d) 
_______ __________ _____ _______

q EPORT DOCUMENTATION PAGE 
______ 

IlI.:I.oRF ct)MpLETiN~; I:oRM
t ‘it r -eg.~ RF~ ~2 GOVT ACLESSION NO 3 RECiPIENT’ S c6I.,~~eo-,4(JMptW

S~ - 8 ‘ f l ’ G 9 t~ 
..~ :ic ~~~~~~ 

I ~
4 T i T L E( a n~’ Seb~~4.~ 

—
i ) N T E R I M”

~r~.P
4. 

ER E D

~ 0I SE~~ U P P R E S S I 0 N  I N  J E T  I N L E T S . / 
1 Feb 77 -31 J a n  78,f

— I ‘- ~~~~~~~~~~~~~~~~~ ~~~~~~~ NuMBER
— 

—
~~ - — .. ....,-————.—.—-————.-

1. AuTH OR(al -- 8~ O N T R A .  G R A N T  NUMBER(5.I

~~~~ 
4962Q-77

~
C

~~~ 6k~~
W I L L I A M  A~~ ELL
~ PtnF,.,,,,t,. enajal,a TiON N A M E  AND A D D R E S S  10. PROGRAM ELEMENT, PROJECT , T A

GEORGIA INSLI-~~~~~~O TECH~ Ot~fiY’j / ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SCHOOL OF A E R O S P A C E  E N G I N E E R I N G ’  ~~ A~~~~Z?~
2 (/ 

~ I
ATLANTA , GEORGIA 30332 61102F
I I . C O N T R O L L I NG O F F IC E  NAME AND ADDRESS 17? ~ REPO A T -

BLDG 
OFFICE OF SCIENTIFIC RESEARCH/~~~ 

_ _ _ _ _ _ _

B OLLING A I R  FORCE BASE , D C 20332 73
14. MONITORiNG AGENCY NAME & ADDRESS(it different fr om Controlling Office) IS. SECURtTY CLASS. (of this report)

U N C L A S S I F I E D
ISa . O E C L A S S I F I C A T I O N / D O W N G R A O I N G

SCHEDULE

(6. ~ ISTRiB UTiON STATEME NT (of il,I~ Report)

Approved for public release; d is t r ibut ion  unl imited .

Ii. DISTRIBUTION STATEMENT (of the abstr act entered in Otock 20, It different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and identity by block number)

ACOUSTIC  R A D I A T I O N
DUCT ACOUSTICS
JET PROPULSION NOISE
A I R C R A F T  NOISE

- 20. A B S T R A C T  (Con il nue on reverse aid. It necessary and identity by block number)

This  report summar izes  the work performed during the f i r s t  year of a research effort  to
de te rmine  the sound fields associated with jet engine in le t  conf igura t ions .  A solution
approach for ax i symmet r i c  bodies based upon the integral formulat ion of the wave equation
has been developed . This solution approach circumvents the uni queness  problems which
normall y occur at cer ta in  frequencies  when “ strai ght forward”  solutions of the integral
equation arc obta ined ,  A numerical  method and a computer program for solving for the
acous tic f ield associa ted wi th general inle t conf igura tions and boundary condition s have
also been developed. To evaluate the numerical method , computed and exact result s are ’,
DD ~~~ 1473 EDiTION OF I NOV 65 IS OBSO LETE U N C  I I”I El)

,_4~;,tf: ,j ’. ,3’ ~~~~~~~~~ 
S E C U R I T Y C L A S S I F I C A T I O N  OF THIS PAGE (I+~,Cn Data Ent.r.d)

- “ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -1~-__ ~~~~~~~~~~~~~~~~~~~~~ 
-- -. - - . —--- ~

__— ___J
~~~~— —



“ .JJN~’LASSIHI’J
) 

- ____ 

- ‘
~

SEC U R I T Y  CLASSIFiCATIO N OF T H i S  PA Gc (Whe, ,  flat ,, F~~t rrai t )

~ ompared for a sp here and a f in i te  length cy l inder.  For continuous boundary conditions ,
the agreement  is wi th in  ten per cent over a range of nondimensional  f requencies  from one
to ten .  For discontinuous boundary conditions , the numerica l  errors increase b y a
factor of two . This report presents  results  for a given inlet  confi gurat ion and the
computed and exact solutions are shown to agree to wi th in  ten per cent over the non—
dimensional frequency range from one to t en ,

S

S 

U N C L A S S I F I E D

-— _~~~~~ _—.- ,——~~~~~‘— -,. 
~ _~~~__ _ ~~~ 

_
~~~—•~_ — - - ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

“ ‘ -
~~~ 

“


